联邦学习——学习笔记2:联邦学习×资源受限下的自适应本地迭代次数


本笔记参考自b站up主:丸一口

论文参考自Adaptive Federated Learning in Resource Constrained Edge Computing Systems

原视频链接

一、符号

原文的符号解释如下图绿色字体所注
在这里插入图片描述

二、应用场景

在这里插入图片描述
就是在资源小于资源预算的情况下,同时又要满足资源受限的条件下,找一个损失函数最小的最终模型wf

三、与FedAvg算法区别

在这里插入图片描述
在第k个客户端上做更新:做E轮循环,把数据集Pk用B的大小进行切分,切分成batches个,对于每一个batches里面的数据做梯度下降,然后整个数据集做完E轮训练得到新模型返回给中心方。

服务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劲夫学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值