本笔记参考自b站up主:丸一口
论文参考自Adaptive Federated Learning in Resource Constrained Edge Computing Systems
原视频链接
一、符号
原文的符号解释如下图绿色字体所注

二、应用场景

就是在资源小于资源预算的情况下,同时又要满足资源受限的条件下,找一个损失函数最小的最终模型wf。
三、与FedAvg算法区别

在第k个客户端上做更新:做E轮循环,把数据集Pk用B的大小进行切分,切分成batches个,对于每一个batches里面的数据做梯度下降,然后整个数据集做完E轮训练得到新模型返回给中心方。
服务