时间序列预测 | Python实现LightGBM模型时间序列预测

24 篇文章 ¥299.90 ¥399.90
15 篇文章 ¥239.90 ¥399.90
本文介绍了使用Python的LightGBM模型进行时间序列预测,特别是LazyProphet库,该库包括特征工程如分段线性基函数、傅里叶基函数和目标值滞后。通过调整参数,LazyProphet在某些情况下展现出接近最先进的性能,并在基准测试中击败了其他树方法。尽管在某些数据集上可能表现不如专门方法,但其易于使用和快速预测使其成为时间序列建模的实用工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列预测 | Python实现LightGBM模型时间序列预测

基本介绍

创建一个基于LightGBM并且适合个人使用的时间序列的快速建模程序.

程序设计

  • 在查看单变量空间中树的其他实现时都会看到一些特征工程,例如分箱、使用目标的滞后值、简单的计数器、季节性虚拟变量,也许还有傅里叶函数。
  • 这对于使用传统的指数平滑等方法是非常棒的。但是我们今天目的是必须对时间元素进行特征化并将其表示为表格数据以提供给树型模型,LazyProphet这时候就出现了。
  • 除此以外,LazyProphet还包含一个额外的特征工程元素:将点”连接”起来。
  • 很简单,将时间序列的第一个点连接起来,并将一条线连接到中途的另一个点,然后将中途的点连接到最后一个点。
  • 重复几次,同时更改将哪个点用作“kink”(中间节点),这就是我们所说的“连接”。
  • 事实证明,这些只是加权分段线性基函数。
  • 这样做的一个缺点是这些线的外推可能会出现偏差。
  • 为了解决这个问题,引入一个惩罚从中点到最后点的每条线的斜率的“衰减”因子。
  • 在这个基础上加滞后的目标值和傅里叶基函数,在某些问题上就能够接近最先进的性能。
  • 因为要求很少,因因此我们把它称作“LazyProphet”。
  • 数据已经被分割为训练和测试集,我们直接使用训练cs
### 使用LightGBM进行时间序列预测 #### 数据预处理 为了使用LightGBM进行有效的时间序列预测,数据准备阶段至关重要。这包括创建滞后特征和其他衍生变量来捕捉时间依赖关系。通常做法是从原始时间序列构建多个输入特征,这些可以是过去的观测值(即滞后的响应变量)、移动平均数或其他统计量。 对于时间序列建模而言,除了目标列外还需要考虑日期或时间戳作为索引,并可能引入额外的周期性成分如星期几、月份等辅助信息[^1]。 #### 构建训练集与测试集 划分训练集和验证集时应遵循时间顺序原则,确保用于评估模型表现的数据位于已知样本之后。这样能更真实地模拟实际应用场景中的情况。 #### 参数调优 选择合适的超参数组合对提升预测精度非常重要。可以通过网格搜索或者随机搜索的方法寻找最佳配置。值得注意的是,在设置树的数量(`num_boost_round`)时要谨慎控制过拟合风险;而学习率(`learning_rate`)则决定了收敛速度以及最终效果之间的平衡。 #### 示例代码 下面给出一段简单的Python脚本展示如何应用上述概念: ```python import pandas as pd from sklearn.model_selection import train_test_split import lightgbm as lgb # 加载并整理数据 data = pd.read_csv('time_series_data.csv', parse_dates=['date']) data.set_index('date', inplace=True) # 创建滞后特征 for lag in range(1, 7): # 假设我们想要前六天的信息 data[f'lag_{lag}'] = data['value'].shift(lag) # 删除含有缺失值的行 data.dropna(inplace=True) # 划分特征矩阵 X 和标签向量 y X = data.iloc[:, :-1] y = data['value'] # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, shuffle=False) # 定义LGBMRegressor对象及其参数 model_params = { 'objective': 'regression', 'metric': {'l2'}, } train_set = lgb.Dataset(X_train, label=y_train) test_set = lgb.Dataset(X_test, label=y_test, reference=train_set) bst = lgb.train(model_params, train_set, valid_sets=[test_set], early_stopping_rounds=5) # 预测新数据点的结果 predictions = bst.predict(X_test, num_iteration=bst.best_iteration)[^4] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值