
数据统计分析
文章平均质量分 84
数据统计分析
优惠券已抵扣
余额抵扣
还需支付
¥239.90
¥399.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
前程算法屋
数据分析与算法实践 在此声明,本人与其他账号没有任何关联,凡是打着本人旗号的其他任何人本人概不负责,谢谢
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
交通状态预测 | Python实现基于神经网络的交通流预测(SAEs、LSTM、GRU)
交通状态预测 | Python实现LSTM神经网络的交通流预测目录交通状态预测 | Python实现LSTM神经网络的交通流预测环境配置数据处理模型结构程序设计预测效果参考资料环境配置Python 3.6Tensorflow-gpu 1.5.0Keras 2.1.3scikit-learn 0.19数据处理数据集:数据来自 Caltrans 绩效测量系统 (PeMS)。数据是加利福尼亚州所有主要大都市地区的高速公路系统的各个探测器实时收集的。"""Processing the d原创 2022-04-21 15:26:44 · 6466 阅读 · 0 评论 -
数据回归分析 | Python实现数据逻辑回归分析
数据回归分析 | Python实现数据逻辑回归分析目录数据回归分析 | Python实现数据逻辑回归分析基本介绍环境准备模型原理程序设计学习小结基本介绍逻辑回归是一种分类算法(虽然名字中带有“回归”)。它是通过一个中间转换函数,将线性回归模型的值映射成概率值 ,然后通过概率值 进行分类。环境准备import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# from ipywidgets import *# f原创 2022-04-21 14:36:35 · 1393 阅读 · 0 评论 -
时间序列分析 | Python时间序列数据统计分布
时间序列分析 | Python时间序列数据统计分布目录时间序列分析 | Python时间序列数据统计分布基本介绍分布类型均匀分布高斯分布对数正态分布泊松分布指数分布学生t分布卡方分布学习总结参考资料基本介绍概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。现实世界中有几个现象实例被认为是统计性质的(即天气数据、销售数据、财务数据等)。这意味着在某些情况下,我们已经能够开发出方法来帮助我们通过可以描述数据特征的数学函数来模拟自然。“概率分布是一个数学原创 2022-04-21 14:01:38 · 1064 阅读 · 0 评论 -
时间序列分析 | Python机器学习时间序列任务概况
时间序列分析 | Python机器学习时间序列任务目录时间序列分析 | Python机器学习时间序列任务基本介绍任务描述时间序列查询时间序列聚类时间序列分类时间序列预测时序异常检测时序主题发现时间序列分割时序信息复原参考资料基本介绍时间序列是随着时间的推移采集得到的有序数据点。例如,在物联网的背景下,来自传感器的测量结果通常包括时间序列(例如,压力、温度、电压等物理值。索引(也称为按内容查询)是在数据库中查找相似时间序列(或给定模式或时间序列子序列)的任务。聚类是将相似的时间序列聚合一起。原创 2022-04-21 13:41:01 · 1064 阅读 · 0 评论 -
时间序列分析 | Python实现时间序列数据分析
时间序列分析 | Python实现时间序列数据分析目录时间序列分析 | Python实现时间序列数据分析基本介绍程序设计总结基本介绍时间序列的处理是传统经济学里面的一个重要篇章,在数据科学和机器学习的背景下,时间序列分析所包含的内容更加复杂。计量经济学里的时间序列特指一元时间序列,也就是数据包含两列,第一列是时间戳,第二列是观察对象。这属于比较经典的时间序列。有时候你会注意到一些时间序列的模型或者算法,比如ARIMA,prophet等,都是针对这类时间序列。商业里面的交易历史信息也是一元时间序原创 2022-04-16 22:27:48 · 1791 阅读 · 0 评论 -
时间序列预测 | Python实现梯度提升Prophet模型时间序列预测
时间序列预测 | Python实现梯度提升Prophet 模型时间序列预测目录时间序列预测 | Python实现梯度提升Prophet 模型时间序列预测基本介绍程序设计总结基本介绍一般情况下 LightGBM 模型都会使用一些lag的特征来预测未来的结果,这样做一般情况下能够取得很好的效果。本文介绍一种新的思路:使用 Prophet 从时间序列中提取新特征,然后使用LightGBM 进行训练,可以得到更好的效果。Prophet 模型的实际预测、置信区间的上限和下限、每日和每周的季节性和趋势等都可以作原创 2022-04-16 22:16:36 · 842 阅读 · 0 评论 -
时间序列预测 | Python实现Informer模型时间序列预测
时间序列预测 | Python实现Informer模型时间序列预测目录时间序列预测 | Python实现Informer模型时间序列预测基本介绍模型结构程序设计学习总结基本介绍序列预测在现实中比较基础但又十分重要的研究场景,如商品销量及库存的预测,未来某个时刻某只股票的价格,疾病的传播及扩散预测等。而长序列预测(Long Sequence Time-Series Forecasting,以下称为 LSTF)方面的工作因为其历史数据量大、计算复杂性高、预测精度要求高更是成为序列预测研究的热点,但一直以原创 2022-04-14 22:14:54 · 7369 阅读 · 0 评论 -
时间序列预测 | Python实现卡尔曼滤波模型时间序列预测
时间序列预测 | Python实现卡尔曼滤波模型时间序列预测目录时间序列预测 | Python实现卡尔曼滤波模型时间序列预测基本介绍程序设计学习总结参考资料基本介绍卡尔曼滤波(Kalman filter)是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波会根据各测量量在不同时间下的值,考虑各时间下的联合分布,再产生对未知变数的估计,因此会比只以单一测量量为基础的估计方式要准。卡尔曼滤波得名自主要贡献者之一的鲁道夫·卡尔曼。卡尔曼滤波的原创 2022-04-14 21:48:19 · 3635 阅读 · 1 评论 -
时间序列预测 | Python实现NeuralProphet模型时间序列预测
时间序列预测 | Python实现NeuralProphet模型时间序列预测目录时间序列预测 | Python实现NeuralProphet模型时间序列预测基本介绍程序设计总结基本介绍NeuralProphet的前辈Prophet并没有global 模型的概念,所以当我们用Prophet预测成千上万个产品的时候,我们就需要建立成千上万个模型。所以,当NeuralProphet提供global模型的思路时,这就在时序预测打开一片新天地了。程序设计这里我采用NeuralProphet 自带的数据原创 2022-04-14 21:35:17 · 2210 阅读 · 0 评论 -
时间序列预测 | Python实现DeepAR模型时间序列预测
时间序列预测 | Python实现DeepAR模型时间序列预测目录时间序列预测 | Python实现DeepAR模型时间序列预测基本介绍程序设计总结基本介绍时间序列几乎无处不在,针对时序的预测也成为一个经典问题。根据时间序列数据的输入和输出格式,时序预测问题可以被更详细的划分。我们在解决时序预测问题时,需要根据问题的描述精细定位。对于一元时间序列,可能经典的ARIMA就能解决问题。当然了,这个划分也不是绝对的,因为一元时间序列通过提取时间相关的特征,转换为多元时间序列。这时候传统的回归算法原创 2022-04-10 22:44:16 · 3472 阅读 · 0 评论 -
时间序列预测 | Python实现LightGBM模型时间序列预测
时间序列预测 | Python实现LightGBM模型时间序列预测目录时间序列预测 | Python实现LightGBM模型时间序列预测基本介绍程序设计总结基本介绍创建一个基于LightGBM并且适合个人使用的时间序列的快速建模程序.程序设计在查看单变量空间中树的其他实现时都会看到一些特征工程,例如分箱、使用目标的滞后值、简单的计数器、季节性虚拟变量,也许还有傅里叶函数。这对于使用传统的指数平滑等方法是非常棒的。但是我们今天目的是必须对时间元素进行特征化并将其表示为表格数据以提供给树型模型原创 2022-04-10 22:27:02 · 4072 阅读 · 0 评论 -
时间序列预测 | Python实现ARIMAX和VARMAX时间序列数据预测
时间序列预测 | Python实现ARIMAX和VARMAX时间序列数据预测目录时间序列预测 | Python实现ARIMAX和VARMAX时间序列数据预测基本介绍ARIMAXVARVARMAVARMAXSESHWES参考资料基本介绍本文介绍ARIMAX、VAR、VARMA和VARMAX基本概念及其Python程序设计。ARIMAX具有外源回归量的自回归整合移动平均值(ARIMAX)是 ARIMA 模型的扩展,其还包括外生变量的建模。外生变量也称为协变量,可以被认为是并行输入序列,其在与原创 2022-01-08 14:13:38 · 6503 阅读 · 2 评论 -
数据预测分析 | Matlab实现TCN时间卷积网络数据预测分析
数据预测分析 | Matlab实现TCN时间卷积网络数据预测分析目录数据预测分析 | Matlab实现TCN时间卷积网络数据预测分析基本介绍数据下载程序设计参考资料致谢基本介绍此示例说明如何使用通用时间卷积网络 (TCN) 对序列数据的每个时间步进行分类。虽然序列到序列的任务通常使用循环神经网络架构来解决,但 Bai 等人表明卷积神经网络可以在典型的序列建模任务上与循环网络的性能相匹配,甚至优于它们。使用卷积网络的潜在好处是更好的并行性、更好地控制感受野大小、更好地控制训练期间网络的内存占用以原创 2021-10-30 15:56:24 · 2676 阅读 · 2 评论 -
时间序列预测 | Python实现LSTM时间序列数据预测
目录LSTM神经网络LSTM原理LSTM数据下载LSTM程序设计导入Python包时序数据处理LSTM模块定义模型训练模型评估参数设定运行结果参考资料致谢LSTM神经网络长短期记忆网络——通常简称为“LSTM”——是一种特殊的 RNN,能够学习长期依赖关系。它们由Hochreiter & Schmidhuber (1997)引入,并在后续工作中被许多人提炼和推广。1它们在处理各种各样的问题时效果非常好,现在被广泛使用。LSTM 被明确设计为避免长期依赖问题。长时间记住信息实际上是他们的默认行为原创 2021-07-15 19:23:33 · 3800 阅读 · 0 评论 -
转移概率预测 | Matlab实现马尔可夫转移概率矩阵计算
目录马尔可夫模型马尔可夫性质转移概率计算参考资料致谢马尔可夫模型马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的,时间和状态都是离散的马尔可夫过程称为马尔可夫链。马尔可夫链是满足下面两个假设的一种随机过程:t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;从t时刻到t+l时刻的状原创 2021-07-14 21:29:50 · 8909 阅读 · 0 评论