随着人工智能在气象预测中的深度融合,结合机器学习与数值气象模型已成为提升多尺度气象预报精度的重要方向。本文将详细介绍如何通过机器学习技术,融合盘古气象模型与RAMS(Regional Atmospheric Modeling System),实现高精度多尺度气象分析与降尺度处理,重点阐述程序结构与实现流程。
一、研究背景与模型简介
**盘古模型(Pangu-Weather)**是基于深度学习技术的全球天气预测模型,采用Transformer架构,通过端到端方式学习大气变量的演变规律,显著提高大尺度气象要素的预测效率和精度。
RAMS模型是一个区域性多尺度大气模拟系统,具有高灵活度的网格结构与复杂的物理参数化方案,适用于中小尺度天气系统模拟和细化区域气象预报。
多尺度融合的关键在于将盘古模型在全球尺度上获得的气象场信息合理注入到高分辨率的RAMS模型中,通过降尺度处理实现局地高精度预报。
二、系统架构与多尺度融合流程
整个系统可以划分为三个主要模块:
1. 数据准备与预处理
-
从ECMWF或GFS获取初始大尺度气象场数据,用于盘古模型的预测输入。
-
收集高分辨率实测数据(地面站点、雷达、卫星数据)作为训练和验证集。
-
使用统一网格投影转换工具(如CDO/NCL)对数据进行空间重采样与坐标统一。
2. 盘古模型预测模块
-
利用预处理后的大尺度初始场输入盘古模型,生成未来预报时间序列的全球气象变量(温度、风场、湿度、降水等)。
-
输出的气象变量通常在0.25°或0.5°分辨率。
3. 降尺度融合与RAMS驱动
-
使用机器学习模型(如U-Net、CNN+GRU)对盘古输出与高分辨率观测之间构建误差修正模型,生成准高分辨率场。
-
将修正后的盘古输出场插值转换为RAMS支