Stable Diffusion高清修复老照片-图生图

修复老照片的意义就不多说了,相信大家都明白,这里直接开讲方法。

1、原理

这个方法需要一个真实模型,以便让修复的照片看起来比较真实,我这里选择:realisticVisionV20,大家有更好的给我推荐哦。

还需用搭配两个特殊设置:

ControlNet
Tile:这是一个ControlNet模型,用于放大和补充细节。

ADetailer:这是一个插件,用于修复人脸,也需要加载对应的模型。

我从网上找了一张比较模糊的照片(如有侵权,请告知替换)。

2、实操

打开Stable Diffusion WebUI,进入“图生图”界面。

(1)选择好大模型,填写合适的提示词和反向提示词。

注意提示词需要匹配照片。不会写的同学,可以使用WebUI中的反向推导工具先生成一个,然后再进行修改,我这里贴出这张图的提示词:

提示词:ultra detailed, masterpiece, best quality, an photo of a old man in a hat
and a hat on his heads, with greying temples, (looking at viewer), a character
portrait, mingei,simple background, clean
反向提示词:easy_negative, NSFW, (worst quality:2), (low quality:2), (normal
quality:2), lowres, normal quality, skin spots, acnes, skin blemishes,age
spot, (ugly:1.331),
(duplicate:1.331),(morbid:1.21),
(mutilated:1.21), (tranny:1.331),flower,lines,white point,plant,

(2)基础生成参数设置。

图生图这里上传待修复的图片:

缩放模式:裁剪,不改变尺寸的情况下这个没影响,改变尺寸的时候会截取。

采样器:Euler a

采样步数;20

尺寸:768*1064,想要出图的尺寸,一般原图尺寸就可以,生成好了再裁减。

提示词引导系数:7,这是默认值,出图不满意的时候可以调整试试。

重绘强度:这里选择1,以更好的补充细节,可以根据实际情况调整 。

图像生成种子:-1,代表随机种子,建议不要固定,否则每次出来的都一样。

(3)设置ControlNet Unit

在第一个Unit中上传原图;勾选“启用”,否则ControlNet不生效;勾选“Pixel Perfect”,勾选“Allow Preview”。

这里选择Control类型为 Tile,注意预处理器和模型都要对应上,都是包含tile的,一般WebUI会自动选择上,没有自动的需要自己选择;

Control Weight 用来控制Tile的权重;

Starting Control Step 和 Ending Control Step 用来控制ControlNet介入图像生成的步骤。

如果想让SD更自由发挥一下,可以调整下权重和介入步数,这里采用默认值。

(4)修脸插件

对于修复大爷的照片,这里感觉没什么用,如果生成效果不好的话,可以试试它。

(5)最后点击生成,看看效果,还不错!

3、相关下载

真实模型:C站可以下载,不方便访问的可以看到文章末尾即可获得下载地址


这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

](https://so.csdn.net/so/search?q=Tile&spm=1001.2101.3001.7020)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值