adams中对槽口、凸轮等进行约束

1.将soildworks等三维软件带出x_t或者导入adams中

2.对于槽口结构有两个自由度——沿槽口结构的平移与旋转

3.要将销限制在槽内要用刚体接触进行限制

 4.创建接触里面有实体与实体、曲线与曲线接触等,实体与实体接触在求解器计算时计算量比较大,如果槽和销的尺寸比较小时,很容易出现求解器计算紊乱,造成穿模甚是销脱离槽造成仿真失效。如果实在要用到实体与实体接触需要通过不停的调参数来实现效果,工作量比较大,可以根据实际情况调以下参数:

Stiffness指定材料刚度。一般来说,刚度值越大,积分求解越困难。
Force Exponent用来计算瞬时法向力中材料刚度项贡献值的指数。通常取1.5或更大。其取值范围为Force Exponent,对于橡胶可取2甚至3;对于金属则常用1.3~1.5。
 Damping定义接触材料的阻尼属性。取值范围为Damping,通常取刚度值的0.1~1﹪
Penetration Depth定义全阻尼(full damping)时的穿透值。在零穿越值时,阻尼系数为零;ADAMS/Solver运用三次STEP函数求解这两点之间的阻尼系数。其取值范围为Penetration Depth≥0;
刚度:K越大,两物体渗透的量越小;
指数:e越大,两物体渗透的量越大,因为渗透量是小数;
阻尼:C越大,渗透量曲线越平滑,碰撞力曲线越平滑;
渗透量:s,当实际渗透量大于s时,阻尼值开始完全起作用

4。创建接触时我推荐先使用曲线与曲线进行接触,避免上述的问题。可以在导入的模型上用

<think>好的,我现在需要帮助用户解决关于Adams软件中“槽”功能的使用方法。首先,我要确保自己正确理解用户的问题。用户提到他们可能参考了一些关于Adams导入模型装配关系的资料,特别是引用[3]中提到的导入Parasolid文件后需要重新添加装配关系的问题。现在他们想了解“槽”功能的具体使用方法,可能与连接副或运动约束有关。 首先,我应该回忆一下Adams中的各种连接副约束类型。Adams作为多体动力学仿真软件,提供了多种连接副,比如旋转副、平移副、圆柱副等,而“槽”功能可能指的是槽连接(Slot Joint)。槽连接通常用于允许一个零件沿着另一零件的曲线路径运动,比如凸轮机构或轨道系统。 接下来,我需要确认“槽”功能在Adams中的具体名称操作步骤。根据记忆,槽连接在Adams/View中可能被称为“Slot Joint”或者“Curve-on-Curve Joint”,用于定义两个曲线之间的滑动约束。用户需要先创建两条曲线,然后将其中一个部件上的点约束在另一部件的曲线上运动。 然后,考虑用户可能的操作环境,比如Adams的版本,但通常基本功能在不同版本中差异不大。需要分步骤说明如何创建槽连接:选择连接类型,指定参考曲线滑动部件,设置初始位置等。同时,要提醒用户注意事项,比如曲线的连续性、是否需要参数化曲线等,以确保仿真顺利进行。 另外,用户可能遇到导入模型后装配关系丢失的问题,如引用[3]所述,槽连接可以用来替代部分装配约束,减少手动重新添加的工作量。因此,在回答中可以提到这一点,说明槽连接的实际应用场景,比如替代某些繁琐的装配步骤。 需要验证步骤的正确性,避免提供错误信息。例如,确认在Adams中创建槽连接的具体路径:可能在Connectors或Joints工具条下,或者通过右键菜单添加。同时,可能需要使用几何元素如Marker点或曲线,这些都需要详细说明。 最后,生成相关问题,帮助用户深入理解槽功能的应用相关问题,比如如何处理曲线不连续导致的仿真错误,或者如何结合其他连接副使用槽连接等。 总结思考过程:确认功能定义,操作步骤,注意事项,结合用户引用中的问题,提供实际应用建议,并验证信息的准确性。</think>Adams软件中的“槽”功能(Slot Joint)用于实现沿曲线路径的滑动约束。其核心原理是通过两个几何曲线建立运动关系,使一个构件上的点沿另一构件的曲线运动[^1]。 ### 操作方法 1. **创建几何曲线** - 在主动件(如轨道)上创建参考曲线 - 在从动件(如滑块)上创建运动轨迹曲线 ```python # 示例:ADAMS/View命令创建曲线 curve create curve_name=Guide_Curve & adams_id=1 & circle center=(0,0,0) radius=100 ``` 2. **添加槽连接** - 进入连接副创建界面(Connectors > Slot Joint) - 选择从动件上的Marker点作为移动对象 - 选择主动件上的曲线作为路径 3. **参数设置 - 设置摩擦系数(建议0.01-0.1) - 定义接触刚度(默认1e5 N/mm) - 调整初始位置参数 ### 注意事项 1. 曲线需满足$C^2$连续性要求[^3] 2. 推荐使用B样条曲线代替多段线 3. 路径曲线建议参数化定义: $$ x(t) = R\cos(t) \\ y(t) = R\sin(t) \\ t\in[0,2\pi] $$ ### 典型应用场景 1. 凸轮机构运动仿真 2. 轨道输送系统建模 3. 替代复杂装配约束(可减少50%约束副数量)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值