智能体记忆设计指南:从短期缓存到长期记忆的8种技术方案

记忆能力是构建高效AI智能体的核心要素之一。随着对话交互的持续深入,实现智能体对历史上下文的持续记忆成为提升理解准确性和个性化服务的关键。鉴于大语言模型固有的上下文窗口限制,未经优化的记忆机制往往导致长对话场景下出现两个典型问题:

  • 遗忘早期信息,导致理解偏差

  • 过度消耗大量计算资源与成本

尽管有Mem0等优秀的开源框架,我们仍然有必要从原理上来理解不同的Memory策略,这有助于在项目中评估、选择与实现最合适的Memory方案。本文将剖析8种常见的AI记忆方案,分析其原理、特点和场景,并用模拟代码帮助理解。

  1. 全量记忆:不遗忘任何内容

  2. 滑动窗口:固定长度的截断

  3. 相关性过滤:遗忘次要信息

  4. 摘要/压缩:提炼关键信息

  5. 向量数据库:语义检索记忆

  6. 知识图谱:结构化记忆

  7. 分层记忆:短期与长期结合

  8. 类OS内存管理:模拟Swap原理

**01

**

全量记忆:不遗忘任何内容

全量记忆模式是最基础、最容易实现的记忆策略。其核心理念是不遗忘任何历史上下文,每轮对话都将用户输入与智能体响应完整记录,并在后续请求中将全部历史上下文一并发送给LLM进行推理。

img

*【基本实现】*

将每轮对话按顺序累积在“对话历史”中,每次回复时都将完整历史作为上下文提供给模型。以下是简单的模拟代码:

img

img

为了帮助理解,本文针对每种模式简单的模拟实现基本的“添加记忆”与“检索记忆”的过程。实际应用需自行完善。

img

history = []
def add_message(user_input, ai_response):    turn = {        "user": user_input,        "assistant": ai_response    }    history.append(turn)
def get_context(query):    return concat_all(history)  

【特点分析】

**优点:实现简单,无需复杂算法;完整保留了所有细节,信息不丢失。
**

*缺点:* 对话稍长可能会触发上下文长度上限,模型需要处理越来越多的文本,导致响应变慢且成本升高。一旦超过模型上下文窗口,早期内容不得不被截断,重要信息可能丢失。此外,长期保留大量不相关旧信息也可能干扰模型判断。

【适合场景】

仅适用于对话轮次很少或者内容短的场景,比如简单QA或一次性问答。在这些情况下,全量记忆确保即使用户提及之前的话题,智能体也不会遗漏。但很显然在大多数实际应用中,这种策略不可持续。

***02*

**

滑动窗口:固定长度记忆

针对全量记忆的弊端,最简单的改进是**限制记忆长度:**人类对话中,我们往往只关注最近的信息,旧话题慢慢就淡忘了。滑动窗口策略正是模仿这种特性:只保留最近的若干轮对话,将更早的内容遗忘,以控制上下文长度。

img

【基本原理】

维护一个固定大小的队列作为对话窗口,每当有新对话加入时,如果超过窗口大小,就从队首移除最旧的一条。模拟实现代码如下:

memory = []WINDOW_SIZE = 3  # 最多保留 3 轮完整对话
def add_message(user_input, ai_response):    turn = {        "user": user_input,        "assistant": ai_response    }    memory.append(turn)
    if len(memory) > WINDOW_SIZE:        memory.pop(0)  # 移除最早一轮问答
def get_context(query):    return concat_all(memory)  # 返回最近几轮对话 

这样,无论对话多长,传给模型的上下文始终是最近的N次交互记录 。窗口向前滑动,新进旧出,实现对过往对话的截断。

【特点分析】**
**

*优点:* 实现非常简单,开销低,不需要引入外部存储;确保模型上下文始终在设定大小内,响应速度和成本相对可控 。**
**

****缺点:****健忘性强,一旦窗口滑过,旧信息就永久丢失,无法支持真正的长期记忆 。如果用户稍后又提及早前内容,智能体因已遗忘就无法关联。此外窗口大小也难以抉择:太小会过早遗忘历史,太大又降低了节省上下文的意义。

【适用场景】

滑动窗口适用于短对话场景或对历史依赖不强的任务。例如FAQ助手、简单闲聊机器人等,不需要长久记住早先话题 。本质上你需要考虑取舍:*通过遗忘来换取性能和成本,但不适合需要长程依赖的对话。*

***03*

**

相关性过滤:遗忘次要信息

人类会选择性记忆,对无关紧要的事很快忘掉。类似地,智能体的记忆也可以有所取舍**:优先保留重要信息,丢弃无用细节。相关性过滤策略就是****基于信息的重要程度来管理记忆**,而不是简单的抛弃旧记忆。

img

【基本原理】

系统为每条记忆分配一个“重要性”或“相关性”评分(Score),根据评分高低决定保留或清除。当新信息进入,导致容量超限时,自动删除评分最低的记忆 。

评分可以依据多种因素:与当前对话主题的相关程度、最近被提及的频率、信息本身的重要度(例如包含用户关键偏好的句子打高分)等。

实现时,可用一个列表或优先队列按分值排序。模拟如下:

memory = []MAX_ITEMS = 25
def add_message(user_input, ai_response):    item = {        "user": user_input,        "assistant": ai_response,        "score": evaluate(user_input, ai_response),    }    memory.append(item)
    if len(memory) > MAX_ITEMS:        # 找出得分最低的项        to_remove = min(memory, key=lambda x: x["score"])        memory.remove(to_remove)
def get_context(query):    # 返回按对话顺序排列的高分记忆    return concat_all(sorted(memory, key=lambda x: x["order"]))

【特点分析】

*优点:* 保证关键知识不会遗忘,因为重要内容打分更高。相比盲目的窗口截断,这种策略更“智能”,能腾出空间的同时尽量不丢关键信息。**
**

*缺点:* 如何准确评估“重要性”是难点,可能需要额外模型计算语义相关度或预定义规则。评分机制不完善时,可能误判重要性,删错记忆。此外,它不像滑动窗口那样可预测,会给调试和理解上带来复杂性。

【适用场景】

适合信息密集且需要筛选的场景,如知识型对话机器人或研究助理工具。在这些应用中,用户提供的大量信息需要智能体加以取舍。例如:一个智能医学助手从患者冗长描述中挑出病史要点存储。

***04*

摘要/压缩:提炼关键信息

有没有办法在不丢失重要信息的前提下缩短对话长度?摘要策略由此诞生。其动机是像人类做笔记一样,将冗长的对话内容去除无用的信息(寒暄、闲聊、重复信息等),浓缩成关键要点(事实、关键数据、兴趣爱好等)保存 。这样既保留了核心信息,又能大量节省上下文窗口空间,缓解记忆无限增长的问题。

在实际实现中,可以结合滑动窗口策略:超出窗口的对话才进行摘要与压缩。

img

【基本原理】

在对话过程中定期将较早的对话内容生成摘要与压缩,并用这个摘要代替原始详细内容存入记忆。摘要可以由一个LLM生成。例如,每当对话超过预定长度(窗口大小)时,把最早的几轮对话拿出来总结,模拟如下:

memory = []summary = NoneMAX_LEN = 10  # 最多保留 10 轮问答
def add_message(user_input, ai_response):    turn = {        "user": user_input,        "assistant": ai_response    }    memory.append(turn)
    if len(memory) > MAX_LEN:        old_turns = memory[:-5]        summary_text = summarize(old_turns)        summary = merge(summary, summary_text)        memory.clear()        memory.append({"summary": summary})        memory.extend(memory[-5:])
def get_context(query):    return concat_all(memory)  # 返回摘要 + 最近对话轮

这里示意了一种运行摘要的机制:持续累计和更新一个摘要来代表早期的对话历史。每当记忆长度超标,就把早期内容做摘要和压缩,再与后续对话共同作为新的上下文 。这样,模型上下文始终包含“近期对话 + 旧对话摘要”。

【特点分析】

优点: 大幅节省上下文长度,长期记忆能力强——理论上,通过不断摘要,早期信息的要点可一直保留 。同时,摘要内容精炼,有助于模型聚焦关键信息。**
**

缺点: 摘要质量取决于LLM,也可能遗漏细节或引入信息偏差。如果摘要不准确,后续智能体基于摘要的生成可能出错。此外生成摘要本身需要耗费额外计算,对实时对话有延迟影响。

【适用场景】

摘要记忆适用于****长对话且需要保留上下文要点****的场景:智能体需记住用户的关键信息(姓名、喜好、诉求等)但不必逐字记住用户每句话。比如一个AI心理陪伴助手。AI可以采用摘要策略,每次对话结束后将本次谈话要点总结存储。下次可以通过之前的摘要回顾用户曾提到的主要问题和情绪变化,从而提供连续性的回应。

***05*

**

向量数据库:语义检索记忆

对于****海量长期记忆*,一个理想方案是将知识存入一个*外部数据库*,在需要时再调取。这类似人类查笔记或资料库。向量数据库记忆策略利用*向量化嵌入(Embedding),将对话内容在向量库存储,并在需要时通过语义检索相关记忆 。其动机在于突破LLM上下文窗口限制,实现近乎无限的外部长时间记忆****

img

*【基本原理】*

将每次对话嵌入后存入向量数据库如 Chroma、Pinecone 等 。当需要记忆时,把当前对话内容也向量化,并在数据库中搜索****语义相近****的记忆片段,将最相关的若干条取出,添加到模型的上下文。模拟如下

# 初始化向量存储memory = VectorStore()
def add_message(user_input, ai_response):    turn = {        "user": user_input,        "assistant": ai_response    }    embedding = embed(turn)    memory.add(embedding, turn)
def get_context(query):    q_embedding = embed(query)    results = memory.search(q_embedding, top_k=3)    return concat_all(results)  # 返回语义最相关的对话轮

*【特点分析】*

**优*****点:****语义级别的智能检索*,能根据内容语义而非关键词匹配相关记忆 。存储容量大,向量数据库可无限扩展,以支持真正的长期记忆,且检索效率高。*
*
**

**缺点:**** 依赖嵌入模型质量,若向量表示不好,检****索结果也可能风马牛不相及 。向量存储与搜索有一定的计算代价,当记忆库很大时,每次相似度计算也会消耗算力 。另外需要部署维护额外的数据库服务,增加系统复杂度。

*【适用场景】*

*需要长期记忆的对话系统*,如个性化助理等。这类系统往往需要记住用户跨会话提供的信息,也非常适合在聊天之外存储知识或****用户背景(因为有向量库)*,让记忆检索具备类似RAG的效果。比如*:**** 一个法律咨询AI,当用户提问复杂法律问题时,AI可以同时检索出相关的记忆和法律知识,用来做增强生成。

***06*

**

知识图谱:结构化记忆

纯粹依赖向量相似度的记忆系统往往将知识视作离散内容,缺乏对知识之间关系的理解 。知识图谱记忆策略旨在以结构化方式存储和组织记忆信息,通过显式的实体、属性和关系来增强智能体的长期结构化记忆和推理能力 。

img

【基本原理】

智能体将对话和交互中提及的实体属性和关系这样的事实信息提取出来,逐步构建起一个知识图谱。比如对话中有“小刘加入了阿里巴巴公司”,那么提取三元组:(小刘, 就职于, 阿里巴公司)。除此之外,还可以记录事件发生的时间等(形成时序知识图谱以处理随时间变化的知识 )。

当需要记忆检索时,智能体可以查询知识图谱:比如先找到相关联的节点、沿关系链追溯信息,甚至进行路径上的逻辑推理,最后将查询或推理出的信息加入上下文。

graph = KnowledgeGraph()  # 初始化知识图谱对象def add_message(user_input, ai_response):    # 将一轮对话转化为结构化三元组 (实体1, 关系, 实体2)    full_text = f"User: {user_input}\nAI: {ai_response}"    triples = extract_triples(full_text)  # LLM提取三元组    for s, r, o in triples:        graph.add_edge(s.strip(), o.strip(), relation=r.strip())def get_context(query):    # 提取查询中可能涉及的实体    entities = extract_entities(query)    context = []    for e in entities:        context += graph.query(e)  # 查询图谱中与实体相关的信息    return context

【特点分析】

*优点:* 将记忆结构化后,智能体能进行更精细的检索和推理 。结构化记忆使AI不再只按相似度找段落,而是可基于图谱回答复杂问题(如基于多跳关系推理)。知识图谱还具有可解释性,查询路径清晰可追溯,这在需要准确溯源的应用中很有价值。**
**

*缺点:* 构建和维护成本高:需要借助LLM抽取知识,可能出错或不完整;图谱规模大时也会面临查询性能和存储问题。同时,知识图谱擅长明确事实推理,但对于模糊语义的匹配可能还需要配合向量搜索。

【适用场景】

适合知识密集型应用和需要跨事件推理的智能体。例如企业客户支持AI需要理解用户历史提问与账户、订单等信息的关联,或科研助理AI需要梳理论文中的概念关系等。

***0**7*

**

分层记忆:短期与长期结合

人类记忆是有层级分工的:有的内容转瞬即忘(如刚听到的一句话),有的会短时间记住(如今天开会要点),而真正重要的内容(如家庭住址、生日)会长期保留。**
**

分层记忆策略旨在构建类似“人脑”的记忆结构:将不同类型、重要程度的信息存入不同层级的存储系统,让智能体在面对不同场景时都能“对症下药”。

img

【基本原理】

该策略将记忆系统划分为多个层级:

  • *工作记忆(短期)*:保存最近几轮对话,更新频繁、容量小,通过滑动窗口维护。

  • *长期记忆(可检索)*:将重要信息嵌入后保存,支持跨会话、长期检索。

  • *提升机制*:比如,当用户在对话中说出类似“记住我XXX”、“我总是”、“我过敏”等关键信息时(也可借助LLM),系统会将这轮信息提升进长期记忆,以供未来使用。

检索时,系统会从短期记忆获取当前上下文,再从长期记忆中基于语义相关性搜索历史记忆,组合出丰富的提示内容交给LLM处理。

这种策略本质上是滑动窗口+向量库+ 重要性判断的组合策略。

short_term = SlidingWindow(max_turns=2)        # 最近几轮对话long_term = VectorDatabase(k=2)                # 可检索的长期嵌入记忆promotion_keywords = ["记住", "总是", "从不", "我过敏", "我的ID是", "我喜欢", "我讨厌"]
def add_message(user_input, ai_response):    short_term.add(user_input, ai_response)
    # 如果用户的输入中包含提示记忆的关键词,则提升至长期记忆;实际中策略可以更复杂     if any(keyword in user_input for keyword in promotion_keywords):        summary = summarize(user_input + ai_response)        vector = embed(summary)        long_term.add(vector, summary)
def get_context(query):    # 获取短期上下文    recent = short_term.get_context()
    # 向长期记忆查询相关内容    vector_query = embed(query)    related = long_term.search(vector_query)
    # 拼接上下文作为提示输入    return f"【长期记忆】\n" + concat(related) + "\n\n【当前上下文】\n" + concat(recent)

【特点分析】

**优点:**可以结合短期记忆与长期记忆优势,近期信息及时响应,历史信息可按需检索;而且即使短期记忆滚动遗忘,但长期的重要记忆依然可查。

*缺点:******这种策略实现上更复杂,需要涉及多个模块(窗口管理、嵌入、召回等);且*调优成本更高,比如关键词或重要性的判断**、嵌入质量、检索精准性、组合上下文策略均需调试。

【适用场景】

适合需要长期上下文感知的智能体系统。比如企业客服Agent,用户先前的订单、偏好需要记住;再或者个人助理类AI,跨天甚至跨月记住日程安排、家庭成员信息;或者教学/医疗场景中需要回顾过往重要的问答、诊断建议、学习习惯等。

***0**8*

**

类OS内存管理:模拟记忆Swap

在计算机中,操作系统通过“主内存 + 硬盘”的组合机制高效地管理有限的物理内存(RAM)与大容量但较慢的磁盘(Disk)。如果借鉴这种机制,也可以为智能体构建一种类OS内存管理的记忆系统:将有限的上下文窗口当作RAM使用,而将超出上下文的信息保存到外部存储中(Page Out),必要时再“交换”回来(Page In)。

img

这种模式与分层记忆模式有点类似,但区别在于:

  • 分层记忆只将关键信息进入二级记忆;而这里只要是窗口外的就会Page Out

  • 分层记忆从二级存储直接检索相关记忆,而这里需要Page In后变成活动记忆

【基本原理】

该策略分为两个层级:

  • *活动记忆*:使用一个滑动窗口,保存最近的对话。访问速度快,但容量有限。

  • *被动记忆*:当活动记忆满了,最旧的内容会被“交换”至外部存储。这些信息虽然不直接在模型当前上下文中,但仍可随时检索。

这种策略有一个“页故障”的机制:当用户提问中包含关键词,而这些关键词所需的信息不在当前RAM中,系统就会触发“Page Fault”,从被动记忆中搜索匹配内容,并“page in”上下文,再供LLM使用。

该策略本质上模拟了OS的虚拟内存管理原理,即“冷热数据分层”的上下文利用。模拟如下:

active_memory = Deque(maxlen=2)   # 快速但小的上下文窗口passive_memory = {}               # 持久存储的被动记忆turn_id = 0                       # 每轮对话唯一标识
def add_message(user_input, ai_response):    global turn_id    turn = f"User: {user_input}\nAI: {ai_response}"
    if len(active_memory) >= 2:        old_id, old_turn = active_memory.popleft()        passive_memory[old_id] = old_turn  # pageout到被动存储
    active_memory.append((turn_id, turn))    turn_id += 1
def get_context(query):    context = "\n".join([x[1] for x in active_memory])  # 当前活动记忆上下文    paged_in = ""
    #这里共关键词模拟判断需要pagein的记忆,实际应用策略更复杂     for id, turn in passive_memory.items():        if any(word in turn.lower() for word in query.lower().split() if len(word) > 3):        #需执行page in的动作,略         paged_in += f"\n(Paged in from Turn {id}): {turn}"               return f"### Active Memory (RAM):\n{context}\n\n### Paged-In from Disk:\n{paged_in}"

【特点分析】

**优点:***该策略最大优势在于结构清晰且符合计算机原理*。它通过将对话拆分成“热数据(当前上下文)”和“冷数据(外部存储)”两层管理,有效缓解上下文窗口限制,同时还能在关键时刻回忆过去的重要信息,大大提高记忆系统的灵活性和扩展性。

**缺点:**实现上需要模拟“page in/out”逻辑,并确保触发时机(比如根据关键词或向量相似)的准确性。如果触发机制设计不佳,可能会出现信息召回不及时或漏召的情况,从而影响对话连贯性。同时,“分页”机制要求设计良好的上下文拼接逻辑。

【适用场景】

适用于上下文窗口受限但又需要长期记忆的智能体系统。它能够在保持对话响应速度的同时,保留大量历史信息,适合低延迟对话、时间跨度较大的任务型助手,以及需要随时回溯旧信息的场景:当用户提出涉及过往内容的问题时,系统可以像操作系统一样将“被交换出去”的记忆及时“唤醒”,实现高效又节省资源的记忆管理。

最后我们简单总结以上的8种记忆策略:

img

学习大模型 AI 如何助力提升市场竞争优势?

随着新技术的不断涌现,特别是在人工智能领域,大模型的应用正逐渐成为提高社会生产效率的关键因素。这些先进的技术工具不仅优化了工作流程,还极大地提升了工作效率。然而,对于个人而言,掌握这些新技术的时间差异将直接影响到他们的竞争优势。正如在计算机、互联网和移动互联网的早期阶段所展现的那样,那些最先掌握新技术的人往往能够在职场中占据先机。

掌握 AI 大模型技能,不仅能够提高个人工作效率,还能增强在求职市场上的竞争力。在当今快速发展的技术时代,大模型 AI 已成为推动市场竞争力的重要力量。个人和企业必须迅速适应这一变化,以便在市场中保持领先地位。

如何学习大模型 AI ?

在我超过十年的互联网企业工作经验中,我有幸指导了许多同行和后辈,并帮助他们实现个人成长和学习进步。我深刻认识到,分享经验和知识对于推动整个行业的发展至关重要。因此,尽管工作繁忙,我仍然致力于整理和分享各种有价值的AI大模型资料,包括AI大模型入门学习思维导图、精选学习书籍手册、视频教程以及实战学习等内容。通过这些免费的资源,我希望能够帮助更多的互联网行业朋友获取正确的学习资料,进而提升大家的技能和竞争力。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
在这里插入图片描述

一、初阶应用:建立AI基础认知

在第一阶段(10天),重点是对大模型 AI 的基本概念和功能进行深入了解。这将帮助您在相关讨论中发表高级、独特的见解,而不仅仅是跟随他人。您将学习如何调教 AI,以及如何将大模型与业务相结合。

主要学习内容:

  • 大模型AI的功能与应用场景:探索AI在各个领域的实际应用
  • AI智能的起源与进化:深入了解AI如何获得并提升其智能水平
  • AI的核心原理与心法:掌握AI技术的核心概念和关键原理
  • 大模型应用的业务与技术架构:学习如何将大模型AI应用于业务场景和技术架构中
  • 代码实践:向GPT-3.5注入新知识的示例代码
  • 提示工程的重要性与核心思想:理解提示工程在AI应用中的关键作用
  • Prompt的构建与指令调优方法:学习如何构建有效的Prompt和进行指令调优
  • 思维链与思维树的应用:掌握思维链和思维树在AI推理和决策中的作用
  • Prompt攻击与防范策略:了解Prompt攻击的类型和如何进行有效的防范
    在这里插入图片描述
    在这里插入图片描述
    、、、

二、中阶应用:深入AI实战开发

在第二阶段(30天),您将进入大模型 AI 的进阶实战学习。这将帮助您构建私有知识库,扩展 AI 的能力,并快速开发基于 agent 的对话机器人。适合 Python 和 JavaScript 程序员。

主要学习内容:

  • RAG的重要性:理解RAG在AI应用中的关键作用
  • 构建基础ChatPDF:动手搭建一个简单的ChatPDF应用
  • 检索基础:掌握信息检索的基本概念和原理
  • 理解向量表示:深入探讨Embeddings的原理和应用
  • 向量数据库与检索技术:学习如何使用向量数据库进行高效检索
  • 基于 vector 的 RAG 实现:掌握基于向量的RAG构建方法
  • RAG系统的高级扩展:探索RAG系统的进阶知识和技巧
  • 混合检索与RAG-Fusion:了解混合检索和RAG-Fusion的概念和应用
  • 向量模型的本地部署策略:学习如何在本地环境中部署向量模型
    在这里插入图片描述

三、高阶应用:模型训练

在这个阶段,你将掌握模型训练的核心技术,能够独立训练和优化大模型AI。你将了解模型训练的基本概念、技术和方法,并能够进行实际操作。

  • 模型训练的意义:理解为什么需要进行模型训练。
  • 模型训练的基本概念:学习模型训练的基本术语和概念。
  • 求解器与损失函数:了解求解器和损失函数在模型训练中的作用。
  • 神经网络训练实践:通过实验学习如何手写一个简单的神经网络并进行训练。
  • 训练与微调:掌握训练、预训练、微调和轻量化微调的概念和应用。
  • Transformer结构:了解Transformer的结构和原理。
  • 轻量化微调:学习如何进行轻量化微调以优化模型性能。
  • 实验数据集构建:掌握如何构建和准备实验数据集。
    在这里插入图片描述
    在这里插入图片描述

四、专家应用:AI商业应用与创业

在这个阶段,你将了解全球大模型的性能、吞吐量和成本等方面的知识,能够在云端和本地等多种环境下部署大模型。你将找到适合自己的项目或创业方向,成为一名被AI武装的产品经理。

  • 硬件选型:学习如何选择合适的硬件来部署和运行大模型AI。
  • 全球大模型概览:了解全球大模型的发展趋势和主要玩家。
  • 国产大模型服务:探索国产大模型服务的优势和特点。
  • OpenAI代理搭建:学习如何搭建OpenAI代理以扩展AI的功能和应用范围。
  • 热身练习:在阿里云 PAI 上部署 Stable Diffusion
  • 本地化部署:在个人计算机上运行大型模型
  • 私有化部署策略:大型模型的内部部署方法
  • 利用 vLLM 进行模型部署:高效部署大型模型的技术
  • 案例分析:如何在阿里云上优雅地私有部署开源大型模型
  • 开源 LLM 项目的全面部署:从零开始部署开源大型语言模型
  • 内容安全与合规:确保AI应用的内容安全和合规性
  • 算法备案流程:互联网信息服务算法的备案指南
    在这里插入图片描述

通过这些学习内容,您不仅能够掌握大模型 AI 的基本技能,还能够深入理解其高级应用,从而在市场竞争中占据优势。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你无疑是AI领域的佼佼者。然而,即使你只能完成60-70%的内容,你也已经展现出了成为一名大模型AI大师的潜力。

最后,本文提供的完整版大模型 AI 学习资料已上传至 CSDN,您可以通过微信扫描下方的 CSDN 官方认证二维码免费领取【保证100%免费】在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值