Deep Residual Learning for Image Rocognition(深度残差神经网络)

论文基本信息

名称:用于图像识别的深度残差学习

取得成就:ResNet在2015年的图像分类,定位和目标检测竞赛以及MS COCO目标检测、分割竞赛等5个主要赛道都获得了1st,并且远远甩开了第二名以及之前的算法,而且超过了人类的水平,获得了2016年CVPR最佳论文。(“CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议)

作者:何恺明(2003年广东省高考状元,09年就已获得CVPR最佳论文奖),张详雨,任少卿,孙剑(导师)(来自于微软亚洲研究院(具有AI黄埔军校之名))

引用量:引用量已超10w,人工智能领域最高

ResNet介绍

技术爆炸:一个弱小文明在非常短的时间内取得了非常大的进步

下图介绍:ImageNet图像分类竞赛从2012-2017年历年的Top5错误率(每张图片都会给出他认为的5个类别,只要这5个里面有正确答案,就认为算法正确)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值