大家好,从 2019 年的谷歌 T5 到 OpenAI GPT 系列,参数量爆炸的大模型不断涌现。可以说,LLMs 的研究在学界和业界都得到了很大的推进,尤其2022年11月底对话大模型 ChatGPT 的出现更是引起了社会各界的广泛关注。
近些年,在大规模语料库上预训练 Transformer 模型产生了预训练语言模型(PLMs),并在解决各类 NLP 任务上展现出了强大的能力。
当参数规模超过一定水平时,这个更大的语言模型实现了显著的性能提升,并展现出小模型中不存在的能力,比如上下文学习。为了区别于 PLM,这类模型被称为大型语言模型(LLMs)。
为了让大家更容易上车大模型赛道,最近技术群组织了一场算法面试讨论会,结合我们技术群小伙伴的面试分享和自己的面试经验,对大模型常考的面试题归纳为:大模型基础,大模型参数微调、训练、推理,大模型应用框架,大模型分布式训练,其他等内容
喜欢本文,喜欢记得收藏、关注、点赞,喜欢技术交流,文末加入我们
大模型基础
-
你比较关注那些主流的开源大模型?
-
目前大模型模型结构都有那些?
-
prefix LM 和 causal LM、encoder-decoder 区别及各自有什么优缺点?
-
模型幻觉是什么?业内解决方案是什么?
-
大模型的 Tokenizer 的实现方法及原理?
-
ChatGLM3 的词表实现方法?
-
GPT3、LLAMA、Chatglm 的Layer Normalization 的区别是什么?各自的优缺点是什么?
-
大模型常用的激活函数有那些?
-
Multi-query Attention 与 Grouped-query Attention 是否了解?区别是什么?
-
多模态大模型是否有接触?落地案例?
大模型参数微调、训练、推理
-
为什么需要进行参选微调?参数微调的有点有那些?
-
模型参数微调的方式有那些?你最常用那些方法?
-
prompt tuning 和 prefix tuning 在微调上的区别是什么?
-
LLaMA-adapter 如何实现稳定训练?
-
LoRA 原理与使用技巧有那些?
-
LoRA 微调优点是什么?
-
AdaLoRA 的思路是怎么样的?
-
LoRA 权重合入chatglm模型的方法?
-
P-tuning 讲一下?与 P-tuning v2 区别在哪里?优点与缺点?
-
为什么SFT之后感觉LLM傻了?
-
垂直领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
-
进行SFT操作的时候,基座模型选用Chat还是Base?
-
领域模型词表扩增是不是有必要的?
-
训练中文大模型的经验和方法
-
模型微调用的什么模型?模型参数是多少?微调模型需要多大显存?
-
预训练和SFT操作有什么不同?
-
训练一个通用大模型的流程有那些
-
DDO 与 DPO 的区别是什么?
-
是否接触过 embeding 模型的微调方法
-
有哪些省内存的大语言模型训练/微调/推理方法?
-
大模型(LLMs)评测有那些方法?如何衡量大模型的效果?
-
如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?
-
模型训练的数据集问题:一般数据集哪里找?
-
为什么需要进行模型量化及原理?
-
大模型词表扩充的方法及工具?
大模型应用框架
-
什么是 LangChain?
-
什么是 LangChain Agent?
-
什么是 LangChain model?
-
除了 LangChain,是否了解其他框架?
-
是否有基于LangChain 搭建大模型应用的经验,请详细说明?
-
搭建大模型应用遇到过那些问题?如何解决的?
-
如何提升大模型的检索效果
-
是否了解上下文压缩方法?
-
如何实现窗口上下文检索?
-
开源的 RAG 框架有哪些,你比较了解?
-
大模型应用框架 LangChain 和 LlamaIndex 各种的优势有那些?
-
你使用的向量库有那些?各自有点与区别?
-
使用外部知识数据库时需要对文档进行分块,如何科学的设置文档块的大小?
-
LLMs 受到上下文长度的限制,如果检索到的文档带有太多噪声,该如何解决这样的问题?
-
RAG(检索增强生成)对于大模型来说,有什么好处?
大模型分布式训练
-
大模型进行训练,你用的是什么框架?
-
业内常用的分布式AI框架,你什么了解?
-
数据并行、张量并行、流水线并行的原理及区别?
-
推理优化技术 Flash Attention 的作用是什么?
-
推理优化技术 Paged Attention 的作用是什么?
-
CPU-offload,ZeRO-offload 了解?
-
ZeRO,零冗余优化器 的三个阶段?
-
混合精度训练的优点是什么?可能带来什么问题?
-
Megatron-DeepSpeed 方法?
-
Megatron-LM 方法
其他
-
你GPU服务器用的那些?
-
是否使用过国产GPU服务器?
-
是否部署过Docker 和 k8s ?
-
Linux 常见命令大全
-
Docker 常用命令大全
-
Kubernetes 常用命令大全
-
平时使用的开发语言是什么?
技术交流
技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。
建立了大模型面试&技术交流群, 大模型学习资料、数据代码、技术交流提升, 均可加知识星球交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2060,备注:技术交流
用通俗易懂的方式讲解系列
- 用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库
- 用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程
- 用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain
- 用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库
- 用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结
- 用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调)
- 用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了
- 用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理
- 用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南
- 用通俗易懂的方式讲解:大模型训练过程概述
- 用通俗易懂的方式讲解:专补大模型短板的RAG
- 用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践
- 用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践
- 用通俗易懂的方式讲解:大模型微调方法总结
- 用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了
- 用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!