DeepSeek-R1 + Cherry Studio 本地部署打造个人 AI 知识库

ChatGPT 爆火的时候,我心里就燃起了一个想法:打造一个专属于自己的AI知识库,它就像我的第二大脑一样,能记住我生活里的点点滴滴。

我随口一问“去年5月我做了什么”,它不仅能精准找到记录,还能帮我回忆起那些差点被遗忘的细节!但这么隐私的东西,用在线服务肯定不放心,必须得在自己电脑上运行才行。

现在,机会来啦!有了能全本地部署的deepseek-r1和bge-m3,再加上界面超优雅的Cherry Studio,这个梦想终于能照进现实。

话不多说,我就把详细的部署教程分享给大家,记得先看两条注意事项:

  • 设备要求:我这次是在苹果M系列芯片、16G内存的MacBook Pro上操作的。Mac有统一内存和显存,但类似配置的PC除了16G及以上内存外,还得有额外显存分配才能正常运行哦。

  • 模型效果:先别吐槽非满血版deepseek-r1的效果,学会部署才是第一步,开源模型发展可快了,一年前谁能想到端侧大模型现在这么厉害呢,以后肯定会更好!

AI算法交流群来了,这是一个面向全体学生和机器学习/算法工程师/研究员的技术沟通和求职交流的平台。

在这里你可以了解最前沿AI技术资讯、Paper、大模型、多模态,算法竞赛、实战项目、获取AI算法的校招/社招准备攻略、面试题库、面试经验分享、Offer选择、内推机会、学习路线、求职答疑和海量学习资料等内容。

同时,你也可以与来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

AI算法交流群方向涉及搜广推、深度学习,机器学习,计算机视觉,知识图谱,自然语言处理,大数据,自动驾驶,机器人,大模型、多模态等多个方向。

可以添加我微信加入:mlc2060

接下来,跟着我的步骤,一步步搭建属于你的个人AI知识库吧!

下载安装ollama

直接点击链接https://ollama.com/download ,根据自己的电脑系统选择对应的安装包下载。安装好后,双击打开它就行。

图片

下载DeepSeek-R1

打开终端,输入命令“ollama run deepseek-r1:14b”,回车后模型就开始下载啦,记得提前看看电脑硬盘空间够不够。

图片

等下载完成,看到“>>>"提示符,就能和模型聊天了,比如问“你是什么模型?”,它会回答你呢。

图片

要是不想用这个模型了,删除命令是“ollama rm deepseek-r1:14b”,想查看已安装模型,就用“ollama list” 命令。

图片

如果想探索更多尺寸的模型,下载命令可以在这个链接找到:https://ollama.com/library/deepseek-r1 ,ollama还支持同时安装多个模型,像阿里通义千问qwen2.5、智谱GLM-4这些都能试试。

下载embedding模型

在终端输入“ollama pull bge-m3”图片

等看到“success”提示,就说明下载完成,关闭终端就行。

这个模型的作用是把知识库里的文档内容转化为便于搜索的向量,简单理解就是处理知识库文档数据的。

安装Cherry Studio

图片

访问https://cherry-ai.com,根据电脑芯片类型选择对应版本下载安装。除了Cherry Studio,像Chatbox、Enchanted、OpenWebUI)这些同类产品也很有意思,感兴趣可以都体验下。

配置模型提供商

图片

Ollama,添加LLM语言模型和embedding嵌入模型:启动Cherry Studio,依次点击左下角设置 - 模型服务 - Ollama,开启Ollama,API地址保持默认。

点击管理按钮,就能看到自动读取到之前下载的deepseek-r1:14b和bge-m3[嵌入]模型,点击添加就完成配置啦。

图片

对了,在模型服务设置里,还能看到Cherry Studio支持的其他模型提供商。

创建知识库

点击Cherry Studio左侧的知识库按钮,再点“添加”,给知识库取个名字,嵌入模型选bge-m3,确定后就创建好啦。

图片

之后可以添加文件或者直接把文件拖拽进去,支持pdf、docx等多种格式,像个人简历、日记都能放进去。

图片

添加文件后会有个蓝色小点loading的处理过程,出现绿色小勾就代表文档能被检索到。这背后用的是RAG技术,AI接收到问题后,会先从知识库里找相关片段,再结合自身知识回复你,这样AI就能“知道”训练时没有的个人信息啦。

图片

现在,回到聊天界面,顶部选deepseek-r1:14b|Ollama模型,输入框下方选中刚创建的知识库,试试问一个模型原本不知道的问题,见证它的神奇吧!

图片

是不是很有成就感?赶紧动手搭建属于你的个人AI知识库,开启高效生活新体验!

### DeepSeek-R1 硅基流动联网搜索功能使用 对于希望利用 DeepSeek-R1 实现硅基流动联网搜索功能的用户而言,完成基本部署之后的操作至关重要。在完成创建秘钥并将其配置到 Cherry Studio 后,确保选择了 `deepseek-ai/DeepSeek-R1` 模型作为目标模型[^1]。 为了启动和有效运用 DeepSeek-R1 的联网搜索能力: #### 配置环境与初始化设置 确保已经按照指导完成了前期准备,包括但不限于创建秘钥、添加模型 ID (`deepseek-ai/DeepSeek-R1`) 并验证连接状态正常。 #### 开启联网搜索选项 进入 DeepSeek-R1 设置界面,在高级选项或特定功能模块中查找“联网搜索”开关,并开启此功能。具体路径可能因版本不同而有所差异,请参照官方文档获取最新指引。 #### 执行联网查询命令 通过集成开发环境(IDE) 或者 API 接口向 DeepSeek-R1 发送带有联网标志位的数据请求包。例如,当采用 Python SDK 进行交互时,可以构建如下形式的消息体来触发一次联网检索操作: ```python from deepseek import DeepSeekClient client = DeepSeekClient(api_key='your_api_key_here') response = client.search(query="example query", enable_web_search=True) print(response.results) ``` 上述代码片段展示了如何调用具备联网搜索特性的查询方法,其中参数 `enable_web_search=True` 显式指明了本次查询应激活网络资源辅助模式[^2]。 #### 查看及处理结果 一旦发起联网搜索指令,DeepSeek-R1 将综合内部知识库以及外部互联网信息源给出更为全面的回答方案。最终的结果集会以结构化数据的形式返回给客户端应用层,便于进一步解析展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值