最近这一两周不少公司已开启春招。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
总结如下:
喜欢本文记得收藏、关注、点赞
字节面试整体感觉,还是挺有压迫感的,面试完感觉口干舌燥的,在面试效率方面是没得说的,非常高。
一面
- 拷打论文
- transformer和llama的LN有什么区别,手写RMSNorm
- FFN有什么不同,写Relu和SwiGLU
- 数据清洗流程
- 质量过滤用什么模型
- PPL公式是什么
- BERT的预训练任务、embedding
- 讲讲位置编码
- 你认为好的prompt的范式是什么
- 开放性问题:端到端的大模型和多个小模型,各自的优缺点是什么
- 手撕:两道easy
二面
- 拷打论文
- 介绍模型
- 数据清洗流程
- 采用什么样的策略、什么样的数据才会便于模型学习
- 数据配比能说下思路吗
- 主流LLM模型结构设计有什么特点
- 如何评估LLM
- 训LLM最大的困难是什么
- 前沿LLM有了解哪些
- 工具调用怎么实现
- 国内LLM有了解哪些
- LLM推理能力的天花板现在是什么程度
- 无手撕
三面
- 问硬件、硬件利用率
- 讲讲deepspeed几个阶段,分别分片什么、代价是什么
- 模型训练时间如何估计
- DP和DDP的区别
- 最多用过多少张卡
- 训练过程如何做模型监控
- 数据配比怎么量化才是一个好的方案
- 讲一下预训练数据处理
- 预训练和SFT如何评估
- encoder-decoder、encoder、decoder区别
- 讲一下文本输入大模型到输出的过程
- decoding策略
- 大模型结构有哪些变化
- 拷打论文
- 手撕:cross-attention