字节大模型算法岗面试压迫感满满,面完感觉口干舌燥....

最近这一两周不少公司已开启春招。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结如下:

《大模型面试宝典》(2025版) 发布!

喜欢本文记得收藏、关注、点赞

在这里插入图片描述


字节面试整体感觉,还是挺有压迫感的,面试完感觉口干舌燥的,在面试效率方面是没得说的,非常高。

一面

  • 拷打论文
  • transformer和llama的LN有什么区别,手写RMSNorm
  • FFN有什么不同,写Relu和SwiGLU
  • 数据清洗流程
  • 质量过滤用什么模型
  • PPL公式是什么
  • BERT的预训练任务、embedding
  • 讲讲位置编码
  • 你认为好的prompt的范式是什么
  • 开放性问题:端到端的大模型和多个小模型,各自的优缺点是什么
  • 手撕:两道easy

二面

  • 拷打论文
  • 介绍模型
  • 数据清洗流程
  • 采用什么样的策略、什么样的数据才会便于模型学习
  • 数据配比能说下思路吗
  • 主流LLM模型结构设计有什么特点
  • 如何评估LLM
  • 训LLM最大的困难是什么
  • 前沿LLM有了解哪些
  • 工具调用怎么实现
  • 国内LLM有了解哪些
  • LLM推理能力的天花板现在是什么程度
  • 无手撕

三面

  • 问硬件、硬件利用率
  • 讲讲deepspeed几个阶段,分别分片什么、代价是什么
  • 模型训练时间如何估计
  • DP和DDP的区别
  • 最多用过多少张卡
  • 训练过程如何做模型监控
  • 数据配比怎么量化才是一个好的方案
  • 讲一下预训练数据处理
  • 预训练和SFT如何评估
  • encoder-decoder、encoder、decoder区别
  • 讲一下文本输入大模型到输出的过程
  • decoding策略
  • 大模型结构有哪些变化
  • 拷打论文
  • 手撕:cross-attention
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值