QwQ-32B 开源!本地部署+微调教程来了

今天,通义千问开源了推理模型QwQ-32B

QwQ-32B 在一系列基准测试中进行了评估,测试了数学推理、编程能力和通用能力。以下结果展示了 QwQ-32B 与其他领先模型的性能对比,包括 DeepSeek-R1-Distilled-Qwen-32B、DeepSeek-R1-Distilled-Llama-70B、o1-mini 以及原始的 DeepSeek-R1。

图片

在测试数学能力的 AIME24 评测集上,以及评估代码能力的 LiveCodeBench 中,千问 QwQ-32B 表现与DeepSeek-R1相当,远胜于 o1-mini 及相同尺寸的R1 蒸馏模型;在由Meta首席科学家杨立昆领衔的“最难LLMs评测榜” LiveBench、谷歌等提出的指令遵循能力IFEval评测集、由加州大学伯克利分校等提出的评估准确调用函数或工具方面的BFCL测试中,千问 QwQ-32B 的得分均超越了 DeepSeek- R1。


最近这一两周不少公司已开启春招。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结如下:

《大模型面试宝典》(2025版) 发布!

喜欢本文记得收藏、关注、点赞

在这里插入图片描述


大规模强化学习

研究团队在冷启动的基础上开展了大规模强化学习。在初始阶段,特别针对数学和编程任务进行了 RL 训练。与依赖传统的奖励模型(reward model)不同,研究团队通过校验生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码是否成功通过测试用例来提供代码的反馈。

研究团队发现在 RL 扩展过程中,随着训练轮次的推进,这两个领域中的性能均表现出持续的提升。

在第一阶段的 RL 过后,研究团队增加了另一个针对通用能力的 RL。此阶段使用通用奖励模型和一些基于规则的验证器进行训练。研究团队发现,通过少量步骤的通用 RL,可以提升其他通用能力,同时在数学和编程任务上的性能没有显著下降。

模型推理

Transformers

from modelscope import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/QwQ-32B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r's are in the word \"strawberry\""
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

Ollama本地拉起

通过Ollama与魔搭平台的整合,开发者也可以直接在本地的Ollama环境,直接运行QwQ-32B模型:

ollama run modelscope.cn/Qwen/QwQ-32B-GGUF

图片

模型微调

我们展示对QwQ-32B进行微调的demo,并给出自定义数据集的格式。

在开始微调之前,请确保您的环境已准备妥当。

# pip install git+https://github.com/modelscope/ms-swift.git

git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .

首先我们使用QWQ-32B蒸馏部分数据,保持其思考的能力,将蒸馏的数据保存在本地路径:qwq-32b-distill.jsonl。

CUDA_VISIBLE_DEVICES=0,1 \
swift infer \
    --model Qwen/QwQ-32B \
    --infer_backend vllm \
    --val_dataset 'AI-ModelScope/alpaca-gpt4-data-zh#1000' 'AI-ModelScope/alpaca-gpt4-data-en#1000' \
    --gpu_memory_utilization 0.9 \
    --max_model_len 32768 \
    --max_new_tokens 8192 \
    --result_path qwq-32b-distill.jsonl \
    --tensor_parallel_size 2 \
    --disable_custom_all_reduce true

微调脚本如下:

NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
    --model Qwen/QwQ-32B \
    --train_type lora \
    --dataset 'qwq-32b-distill.jsonl' \
              '<your-dataset-path>' \
    --torch_dtype bfloat16 \
    --num_train_epochs 1 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --learning_rate 1e-4 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --target_modules all-linear \
    --gradient_accumulation_steps 8 \
    --eval_steps 50 \
    --save_steps 50 \
    --save_total_limit 5 \
    --logging_steps 5 \
    --max_length 4096 \
    --output_dir output \
    --warmup_ratio 0.05 \
    --dataloader_num_workers 4 \
    --model_author swift \
    --model_name swift-robot \
    --deepspeed zero2

自定义数据集可以参考以下格式:

{"messages": [{"role": "system", "content": "你是个有用无害的助手"}, {"role": "user", "content": "告诉我明天的天气"}, {"role": "assistant", "content": "<think>\n...</think>\n\n明天天气晴朗"}]}
{"messages": [{"role": "system", "content": "你是个有用无害的数学计算器"}, {"role": "user", "content": "1+1等于几"}, {"role": "assistant", "content": "<think>\n...</think>\n\n等于2"}, {"role": "user", "content": "再加1呢"}, {"role": "assistant", "content": "<think>\n...</think>\n\n等于3"}]}

训练显存占用:

图片

训练完成后,使用以下命令对训练后的权重进行推理,这里的`–adapters`需要替换成训练生成的last checkpoint文件夹。

CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --adapters output/vx-xxx/checkpoint-xxx \
    --stream true \
    --max_new_tokens 2048 \
    --infer_backend pt

推送模型到ModelScope:

CUDA_VISIBLE_DEVICES=0 \
swift export \
    --adapters output/vx-xxx/checkpoint-xxx \
    --push_to_hub true \
    --hub_model_id '<your-model-id>' \
    --hub_token '<your-sdk-token>'
<think>好的,我现在需要帮助用户了解如何在本地配置qwq32b模型以确保其流畅运行。首先,我需要明确qwq32b模型的具体参数,比如模型的大小、架构、训练数据量等,因为这些信息直接影响硬件需求。不过,用户可能没有提供这些细节,所以我需要基于常见的类似模型(如GPT-3或BERT)的配置要求来进行推断。 接下来,用户提到的“本地畅流运行”可能指的是在本地部署模型时,能够实时或高效地进行推理,而不会出现明显的延迟或卡顿。这通常涉及到硬件资源如CPU、GPU、内存和存储的配置。我需要分别分析每个部分的需求。 首先,GPU是关键。大型模型如qwq32b可能需要高性能的GPU,比如NVIDIA的A100或V100,因为它们支持大规模的并行计算和较大的显存。显存不足会导致模型无法加载,因此需要确保显存足够容纳模型参数和中间变量。例如,一个175B参数的模型可能需要至少40GB的显存,但qwq32b的具体参数未知,可能需要参考类似模型。 然后是CPU和内存。虽然GPU负责主要计算,但CPU需要足够处理数据预处理和后处理任务,内存容量也需要足够大以支持数据缓存,尤其是批量处理时。建议至少16核的CPU和64GB的RAM。 存储方面,模型文件本身可能占用较大空间,尤其是如果包含多个检查点或版本。NVMe SSD可以提高加载速度,减少IO瓶颈。 软件环境方面,需要安装合适的深度学习框架如PyTorch或TensorFlow,并配置CUDA和cuDNN以支持GPU加速。此外,模型优化技术如量化(减少精度)、模型剪枝或使用更高效的计算库(如DeepSpeed)可以降低资源消耗。 用户可能还需要考虑分布式计算,如果单卡显存不足,可以使用多卡并行。内存交换技术如CPU offloading可以在显存不足时将部分数据转移到内存,但这可能会影响性能。 另外,参考用户提供的引用[^1],提到更多的上下文信息需要更多的递归次数。这可能意味着在处理较长的输入序列或复杂任务时,模型需要更多的计算资源,因此配置时要留有余地。 最后,我需要整理这些点,确保回答结构清晰,分点说明硬件、软件和优化建议,并生成相关问题,如最低配置、量化方法、框架选择等,帮助用户进一步探索。</think>[系统级配置分析] 要使qwq32b模型在本地流畅运行,需综合考虑以下配置要求: ### 1. **硬件需求** - **GPU**: 推荐使用显存≥24GB的NVIDIA显卡(如A100/V100/3090/4090),支持FP16/FP32混合精度计算。若模型参数规模接近175B级别,需多卡并行(如4×A100 80GB)[^1]。 - **CPU**: 建议16核以上(如Intel Xeon或AMD Ryzen Threadripper),主频≥3.5GHz以处理数据预处理任务。 - **内存**: ≥128GB DDR4,支持高频带宽(如3200MHz以上)。 - **存储**: 至少1TB NVMe SSD用于快速加载模型权重(HuggingFace格式的qwq32b模型文件通常占用300-500GB)。 ### 2. **软件环境** ```bash # 基础依赖示例 conda create -n qwq32b_env python=3.10 conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch pip install transformers accelerate bitsandbytes ``` - **量化支持**: 使用`bitsandbytes`库进行8-bit/4-bit量化可降低显存占用30%-50%。 - **推理优化**: 启用`transformers`的`device_map="auto"`模式自动分配计算资源。 ### 3. **关键配置参数** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "qwq32b", load_in_8bit=True, # 8位量化 device_map="balanced", max_memory={0:"24GiB", "cpu":"96GiB"} ) tokenizer = AutoTokenizer.from_pretrained("qwq32b") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值