Logistics Scheduling: Traditional vs AI-Based Approaches and Proposed Graph-Based AI Solution_纯英文版

Logistics Scheduling: Traditional vs AI-Based Approaches and Proposed Graph-Based AI Solution

Traditional and AI-driven scheduling approaches in warehouse robotics differ in design, methods, and trade-offs. The table below summarizes architecture, algorithm types, advantages, and disadvantages of each approach based on recent literature (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning). It highlights that traditional schedulers use static, rule-based control, whereas AI-based schedulers employ data-driven, adaptive techniques.

Aspect Traditional Algorithms AI-Based Algorithms
Architecture - Centralized or hierarchical planner; often static scheduling (tasks fixed in advance) (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- Manually configured rules (dispatch priorities)
- Decentralized/data-driven control; dynamic re-planning in real-time (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- Integrates learning modules (feedback loops, analytics)
Algorithm Types - Dispatch rules (priority-based heuristics) (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- Metaheuristics (genetic algorithms, simulated annealing, Tabu search) (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- Exact optimization (mixed-integer/linear programming, integer programming) (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- Machine learning (neural networks, deep learning) (Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review)
- Reinforcement learning (e.g. Q-learning, Deep Q-Nets) (Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review)
- Swarm/evolutionary (particle swarm optimization, ant colony optimization) (Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review)
- Other AI models (decision trees, SVMs) (Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review)
Advantages - Proven, predictable behavior; easy to verify and certify
- Low computational overhead; simple implementation
- Well-understood (straightforward tuning)
- Adaptive to changing conditions; learns patterns from data
- Continuously improves scheduling (predicts future states)
- Can reduce cost and energy use by optimizing globally (Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review)
- Often yields better throughput in complex environments (Artificial Intelligence to Solve Production Scheduling Problems in Real Industrial Settings: Systematic Literature Review)
Disadvantages - Poor adaptability; struggles with dynamic or stochastic changes (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- May be suboptimal on complex problems (NP-hard cases) (Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning)
- Manual tuning required; rigid rule-set can break under disruption
- Higher computational complexity and implementation cost
- Requires large data sets and training; risk of overfitting
- “Black box” nature (harder to interpret/validate)
  • Sources: The comparison above draws on recent studies. For example, Schweitzer et al. note that traditional schedulers “often have difficulties in adapting to changing environment conditions” (Choosing Solution Strategies fo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃青菜的大力水手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值