主要适用于二分法, 也可以使用多个逻辑回归实现多分类
逻辑回归 = 线性回归结果 -> Sigmoid函数 => 概率
概率范围: [0, 1] => 设置阈值(假设: 大于0.5 => A)
一. 逻辑回归简介
应用场景
数学知识
sigmoid函数
概率
极大似然估计
核心思想
设模型中含有待估参数w,可以取很多值。已经知道了样本观测值,从w的一切可能值中(选出一个使该观察值出现的概率为最大的值,作为w参数的估计值,这就是极大似然估计。(顾名思义:就是看上去那个是最大可能的意思)
举个例子
假设有一枚不均匀的硬币,出现正面的概率和反面的概率是不同的。假定出现正面的概率为𝜃, 抛了6次得到如下现象 D = {正面,反面,反面,正面,正面,正面}。每次投掷事件都是相互独立的。 则根据产生的现象D,来估计参数𝜃是多少?
P(D|𝜃) = P {正面,反面,反面,正面,正面,正面} = P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) =𝜃 *(1-𝜃)*(1-𝜃)𝜃*𝜃*𝜃 = 𝜃4(1 − 𝜃)
问题转化为:求此函数的极大值时,估计𝜃为多少
对数函数
二. 逻辑回归原理
逻辑回归 = 线性回归结果 -> Sigmoid函数 => 概率
概率范围: [0, 1] => 设置阈值(假设: 大于0.5 => A)
概念
★损失函数
原理: 每个样本预测值有A B两个类别, 真实类别对应的位置, 概率越大越好