机器学习篇-逻辑回归-分类评估-混淆矩阵-精确率-召回率-F1值

主要适用于二分法, 也可以使用多个逻辑回归实现多分类

逻辑回归 = 线性回归结果 -> Sigmoid函数 => 概率

概率范围: [0, 1] => 设置阈值(假设: 大于0.5 => A)

一. 逻辑回归简介

应用场景

数学知识

sigmoid函数

概率

极大似然估计

核心思想

设模型中含有待估参数w,可以取很多值。已经知道了样本观测值,从w的一切可能值中(选出一个使该观察值出现的概率为最大的值,作为w参数的估计值,这就是极大似然估计。(顾名思义:就是看上去那个是最大可能的意思)

举个例子

假设有一枚不均匀的硬币,出现正面的概率和反面的概率是不同的。假定出现正面的概率为𝜃, 抛了6次得到如下现象 D = {正面,反面,反面,正面,正面,正面}。每次投掷事件都是相互独立的。 则根据产生的现象D,来估计参数𝜃是多少?

P(D|𝜃) = P {正面,反面,反面,正面,正面,正面}
 = P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) P(正面|𝜃) P(正面|𝜃)
​
=𝜃 *(1-𝜃)*(1-𝜃)𝜃*𝜃*𝜃 = 𝜃4(1 − 𝜃)

问题转化为:求此函数的极大值时,估计𝜃为多少

对数函数

二. 逻辑回归原理

逻辑回归 = 线性回归结果 -> Sigmoid函数 => 概率

概率范围: [0, 1] => 设置阈值(假设: 大于0.5 => A)

概念

★损失函数

原理: 每个样本预测值有A B两个类别, 真实类别对应的位置, 概率越大越好

三. ★逻辑回归API函数和案例

逻辑回归API

癌症预估分类案例

数据介绍

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值