
嵌入式人工智能开发
文章平均质量分 96
介绍与开发终端可用的人工智能模型,深度学习、机器学习、智能优化算法、数据挖掘、数据分析等方法,以及人工智能算法应用,以及部分应用部署在项目中。本专栏预计更新较慢,现价格优惠,后期根据情况会调整价格。专栏为项目文章不包含项目工程文件,详细说明见专栏置顶链接。工程文件可付费下载。可提供定做/指导(有偿)
优惠券已抵扣
余额抵扣
还需支付
¥29.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
阿齐Archie
交流+微信公众号:阿齐Archie(嵌入式工程师-专注嵌入式系统、单片机、物联网、智能检测控制、上位机、人工智能、智能计算等)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
嵌入式人工智能开发项目合集列表与专栏说明——Excel合集列表目录查阅(持续更新)
为方便查找专栏的项目,特整理Excel合集列表供查阅,嵌入式人工智能开发项目合集列表与专栏说明——Excel合集列表目录查阅(持续更新)原创 2024-09-18 22:43:03 · 32621 阅读 · 4 评论 -
基于云计算、大数据与YOLO设计的火灾/火焰目标检测
本研究针对火灾早期预警检测需求,采用在Kaggle平台获取数据、采用云计算部署的方式,以YOLOv11构建模型。经训练,box loss从约3.5降至1.0,cls loss从约4.0降至1.0,dfl loss从约4.0降至0.2,精确率达0.8,召回率近1.0,[email protected]为0.875,表明模型性能良好,可用于火灾早期检测并为相关安防领域提供借鉴,发生火灾时火焰能够被及时检测到,最大限度地保障人员生命和财产安全。原创 2025-01-31 02:49:25 · 4462 阅读 · 0 评论 -
【Android开发】实现二维码/条形码扫描应用(QR/barcode)-支持直接扫码和从相册选择图片进行识别+闪光灯
实现二维码和条形码扫描识别的 Android 应用,具有广泛的应用场景,如购物扫码、票务验证等。本项目通过结合 Android 开发技术和 zxinglibrary 库(基于传统的计算机视觉和图像处理算法来实现二维码和条形码的解码),实现二维码 / 条形码扫描应用,支持直接扫码和从相册选择图片进行识别,并可选择打开闪光灯,文末完整工程链接。原创 2025-02-12 20:34:41 · 7834 阅读 · 0 评论 -
【Android开发】安卓手机APP使用机器学习进行QR二维码识别
本项目是一个 Android 平台的二维码扫描应用,具备二维码扫描和信息展示功能。借助 AndroidX CameraX 库实现相机的预览、图像捕获与分析,使用 Google ML Kit 进行二维码识别。为方便大家了解项目全貌,以下将介绍项目核心代码文件 MainActivity.java 和 AndroidManifest.xml 的结构与功能。原创 2025-02-12 17:24:50 · 7726 阅读 · 0 评论 -
【Android开发】安卓手机APP拍照并使用机器学习进行OCR文字识别
点击手机APP上的拍照后,调取手机设备相机拍照并获取图片显示到手机APP页面,进行提取照片内的文字,并将识别结果显示在界面上,在离线模式下也可用。原创 2025-02-12 15:52:09 · 7930 阅读 · 0 评论 -
【ESP32CAM+Android+OpenCV】自定义目标数据集、训练自己的OpenCV模型部署到手机APP并对ESP32CAM无线图传显示并实时检测识别目标
本项目实现自定义目标数据集(想检测什么就检测什么,按照本文教程自己来更换目标)、训练自己的OpenCV模型实时检测识别(pycharm工程)。手机APP(Android studio工程)部署OpenCV模型实现对ESP32CAM(arduino工程)无线WIFI图传过来的图像实时检测识别。本文以火焰检测识别为例进行演示,通过该过程,结合本文可自定义尝试更换为其它目标的检测,例如更换为车辆、车牌、手势、人脸面部活动、人脸表情、火焰烟雾、行人、口罩、行为、水果、植物、农作物、建筑、损伤等等部署进行检测。原创 2024-12-24 14:17:11 · 2907 阅读 · 0 评论 -
【YOLO部署Android安卓手机APP】YOLO11部署到安卓实时目标检测识别——以火焰烟雾目标检测识别举例(可自定义更换其他目标)
本项目基于YOLOv11部署到手机APP实现对火焰烟雾的检测识别,当然,以此你可以按照本项目开发步骤扩展更换为其他目标进行检测,例如更换为车牌、手势、人脸面部活动、人脸表情、火焰烟雾、行人、口罩、行为、水果、植物、农作物等等部署手机APP进行检测。本文为详细设计/配置文档,包含完整所需的环境配置搭建,项目工程配置步骤等,手把手记录使用pycharm和Android studio的工程开发过程,实现YOLO部署到安卓。实战开发,亲测无误。演示视频训练了50轮进行了展示(为演示,训练轮数较少,你可以训练轮数多些原创 2024-12-07 19:36:27 · 9103 阅读 · 3 评论 -
【YOLO部署Android安卓手机APP】YOLOv8部署到安卓实时目标检测识别——官方/自训练模型YOLOv8人脸/车辆等目标检测(可自定义更换其他目标)
本文首先讲解如何直接使用官方训练好的模型部署到手机APP进行人脸检测,然后讲解如何修改其他目标进行检测,以车辆检测为例进行讲解如何训练自己的模型部署到手机APP。本文为详细设计/配置文档,包含完整所需的环境配置搭建,项目工程配置步骤等,手把手记录使用pycharm和Android studio的工程开发过程,实现YOLO部署到安卓。实战开发,亲测无误。本项目实现了人脸检测和车辆检测,当然,以此你可以按照本项目开发步骤扩展更换为其他目标进行检测,例如更换为车牌、手势、人脸面部活动、人脸表情、火焰烟雾、行人等原创 2024-11-30 16:31:07 · 9789 阅读 · 5 评论 -
【ESP32CAM+Android+OpenCV】ESP32-CAM实时图像检测人脸识别
本项目通过ESP32-CAM实时图像检测人脸识别,通过调用OpenCV实现对人正脸的识别,可修改为对眼睛、猫等其他内容进行检测识别。本文对开发过程介绍,本项目包含全部源码,ESP32CAM源码(arduino)、Android手机APP源码及配置OpenCV。原创 2024-11-24 17:26:04 · 7679 阅读 · 0 评论 -
【嵌入式AI开发】轻量化卷积神经网络MobileNetV3详解
本文对MobileNetv3网络结构进行详细的讲解。1.更新Block(bneck),也就是逆残差结构上的简单改动。2.使用NAS搜索参数(Neural Architecture Search)。3.重新设计耗时层结构,(对网络的每一层的推理时间进行分析,针对某些耗时的层结构做进一步优化)。4.重新设计激活函数原创 2024-04-28 22:08:14 · 25490 阅读 · 22 评论 -
【嵌入式AI开发】轻量化卷积神经网络Mnasnet(神经架构搜索)详解
谷歌轻量化卷积神经网络Mnasnet,介于MobileNet V2和V3之间。使用多目标优化的目标函数,兼顾速度和精度,其中速度用真实手机推断时间衡量。提出分层的神经网络架构搜索空间,将卷积神经网络分解为若干block,分别搜索各自的基本模块,保证层结构多样性。原创 2024-04-28 17:42:27 · 25969 阅读 · 10 评论 -
【嵌入式AI开发】轻量级卷积神经网络MobileNetV2详解
MobileNetV2网络先升维后降维,在降维时使用线性激活函数,带残差的Inverted bottleck模块,防止ReLU信息丢失。在图像分类、目标检测、语义分割等任务上实现了网络轻量化、速度和准确度的权衡。原创 2024-04-27 20:51:32 · 26073 阅读 · 41 评论 -
【嵌入式AI开发】轻量级卷积神经网络MobileNetV1、MobileNetV2、ResNet50项目实战
本文介绍轻量级卷积神经网络MobileNet网络实战,包含MobileNetV1、MobileNetV2、ResNet50三个预训练模型可供选择。实现:1.预训练MobileNet图像分类,2.调用摄像头实时MobileNet图像分类,3.MobileNet视频图像分类。原创 2024-04-27 12:56:11 · 26318 阅读 · 0 评论 -
【嵌入式AI开发】轻量级卷积神经网络MobileNetV1详解
本文对轻量级卷积神经网络MobileNetV1网络进行详解。MobileNetV1网络就是由若干个深度可分离卷积模块堆叠起来的,深度可分离卷积由DW卷积核PW卷积构成。原创 2024-04-26 13:06:48 · 26749 阅读 · 47 评论 -
【嵌入式AI部署神经网络】STM32CubeIDE上部署神经网络之指纹识别(Pytorch)——篇一|环境搭建与模型初步部署篇
本篇主要讲解搭建所需环境,以及基于pytorch框架在stm32cubeide上部署神经网络,部署神经网络到STM32单片机,本篇实现初步部署模型,没有加入训练集与验证集,将在第二篇加入。篇二详细讲解STM32CubeIDE上部署神经网络之指纹识别(Pytorch)的数据准备和模型训练过程等,进行实战,第二篇在本专栏查阅。原创 2024-04-23 22:21:33 · 31347 阅读 · 0 评论