TechGPT2部署

1.环境

conda create -n techgpt python=3.10
conda activate techgpt

 2.安装依赖

pip install transformers
pip install torch

pip install accelerate

3.克隆项目

开一下学术加速,然后克隆。

source /etc/network_turbo

git clone https://github.com/neukg/TechGPT-2.0.git

4.登录 Hugging Face 账户

pip install huggingface_hub
huggingface-cli login

5.下载模型到本地

from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="neukg/TechGPT-2.0-Qwen1.5-7b",
    local_dir="/root/autodl-tmp/TechGPT-2.0-Qwen1.5-7b",
    resume_download=True,
    local_dir_use_symlinks=False
)

6.运行

from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch

# ✅ Qwen 的系统提示语(支持中英)
DEFAULT_SYSTEM_PROMPT = "You are a helpful assistant."

# ✅ Qwen 默认不使用 Alpaca 的 [INST] 模板,直接使用自然语言 prompt
example = "请把下列标题扩写成摘要, 不少于100字: 基于视觉语言多模态的实体关系联合抽取的研究。"

# ✅ 模型路径(改为你的 Qwen 模型保存目录)
ckpt_path = "/root/autodl-tmp/TechGPT-2.0-Qwen1.5-7b"

# ✅ 加载模型与 tokenizer(注意 trust_remote_code)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    ckpt_path,
    device_map="auto",                  # 自动选择 GPU
    torch_dtype=torch.float16,
    trust_remote_code=True
)
model.eval()

# ✅ Qwen 推荐使用的生成配置
generation_config = GenerationConfig(
    temperature=0.8,
    top_p=0.8,
    top_k=40,
    num_beams=1,
    do_sample=True,
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.pad_token_id,
    max_new_tokens=256,
)

# ✅ 构造输入
example = "请把下列标题扩写成摘要, 不少于100字: 基于视觉语言多模态的实体关系联合抽取的研究。"

prompt = f"<|im_start|>system\n{DEFAULT_SYSTEM_PROMPT}<|im_end|>\n<|im_start|>user\n{example}<|im_end|>\n<|im_start|>assistant\n"

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)


# ✅ 生成回复
with torch.no_grad():
    generation_output = model.generate(
        **inputs,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True
    )
    output = generation_output.sequences[0]
    output_text = tokenizer.decode(output, skip_special_tokens=True)

# ✅ 打印结果
print("\n🧠 模型回复:")
print(output_text)

7.效果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值