Agent 基础架构:LLM + 规划 + 记忆 + 工具使用

  • 大语言模型 (LLM)
  • 规划算法
  • 记忆机制
  • 工具使用
  • 智能代理
  • 强化学习

1. 背景介绍

近年来,人工智能领域取得了令人瞩目的进展,特别是大语言模型 (LLM) 的快速发展。LLM 凭借其强大的文本理解和生成能力,在自然语言处理、机器翻译、文本摘要等领域展现出巨大的潜力。然而,单靠 LLM 难以满足复杂任务的需求,例如需要进行推理、规划和决策的场景。

为了构建更智能、更具自主性的代理,我们需要将 LLM 与其他关键组件结合起来,构建一个完整的 Agent 基础架构。

2. 核心概念与联系

2.1 核心概念

  • 大语言模型 (LLM): 训练于海量文本数据,能够理解和生成人类语言的深度学习模型。
  • 规划算法: 用于制定从当前状态到目标状态的一系列步骤的算法。
  • 记忆机制: 用于存储和检索历史信息,帮助代理做出更明智的决策。
  • 工具使用: 代理能够利用外部工具和资源来完成任务。

2.2 架构图

graph LR
    A[LLM] -->
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI架构师小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值