- 大语言模型 (LLM)
- 规划算法
- 记忆机制
- 工具使用
- 智能代理
- 强化学习
1. 背景介绍
近年来,人工智能领域取得了令人瞩目的进展,特别是大语言模型 (LLM) 的快速发展。LLM 凭借其强大的文本理解和生成能力,在自然语言处理、机器翻译、文本摘要等领域展现出巨大的潜力。然而,单靠 LLM 难以满足复杂任务的需求,例如需要进行推理、规划和决策的场景。
为了构建更智能、更具自主性的代理,我们需要将 LLM 与其他关键组件结合起来,构建一个完整的 Agent 基础架构。
2. 核心概念与联系
2.1 核心概念
- 大语言模型 (LLM): 训练于海量文本数据,能够理解和生成人类语言的深度学习模型。
- 规划算法: 用于制定从当前状态到目标状态的一系列步骤的算法。
- 记忆机制: 用于存储和检索历史信息,帮助代理做出更明智的决策。
- 工具使用: 代理能够利用外部工具和资源来完成任务。
2.2 架构图
graph LR
A[LLM] -->