
深度学习之目标检测
文章平均质量分 90
本专栏主要基于paddle和pytorch框架进行深度学习任务~
心无旁骛~
百度飞桨星河社区中级精品作者、2023年度文心卓越贡献奖,在校期间获国家级奖项7项、省级奖项10余项,申请发明专利一项、科研项目四项,成功发表SCI2区论文一篇,中文普刊一篇,欢迎大家一起学习交流~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于yolov5-master和pyqt5的森林火灾监测软件
火灾作为威胁人类生命生产安全的隐患之一,一直是人们关注的重点。传统的火灾监测装置根据温度来检测火灾,不仅灵敏度差,而且反馈时间长,常常会出现消防员收到警报消息时,火室已经无法控制。森林火灾监测系统的设计与实现是一项基于深度学习技术的创新性研究,旨在通过自动检测和分析森林的图像数据,实时监测和预防森林火灾的发生。我们选择了PyTorch作为主要的深度学习框架,并结合了目标检测领域的主流算法YOLOv5来完成这一任务。本系统的主要目标是提高火灾检测的准确性和实时性。原创 2024-01-21 23:49:40 · 2314 阅读 · 0 评论 -
基于YOLOv5、v7、v8的竹签计数系统的设计与实现
该系统是一个综合型的应用,基于PyTorch框架的YOLOv5、YOLOv7和YOLOv8,结合了Django后端和Vue3前端,为竹签生成工厂和串串香店铺提供了一套全面而强大的实时监测与分析解决方案。系统主要特色在于实时目标检测和位置追踪,支持用户通过上传图片、视频或摄像头进行推理,实时获取竹签的位置和数量。这一功能的实现基于高度精准的YOLO模型,为生产过程提供了即时可用的信息,助力企业合理安排生产计划、优化库存管理。原创 2024-01-21 23:22:08 · 2915 阅读 · 1 评论 -
基于YOLOv8的结核病预测系统设计与实现
本系统的目的是通过痰液图像来检测出结核杆菌的携带者,及时采取治疗措施,在病情早期对其进行相关治疗减少结核病的传播。程序使用的样本是经过染色处理可以使得结核杆菌在显微镜拍摄的医学图像,通过检测医学图像中的结核杆菌诊断检测该样本的所属者是否患有结核病;为了减少医生的工作量,我们通过构建准确的目标检测模型辅助医生进行检测工作,只需将显微镜拍摄的医学图像交给计算机,让计算机自动预测图像中是否含有结合杆菌,并将预测结果呈现给医生,为医生诊断病情提供决策依据,缩短诊断病情的时间,提高病情诊断准确率。原创 2023-12-20 18:25:14 · 1939 阅读 · 1 评论 -
基于YOLOv5的吸烟检测系统设计与实现
吸烟检测作为保障公共健康和环境安全的重要任务之一,一直备受关注。传统的吸烟检测方法往往依赖人工判断,存在准确性低和实时性差的问题。为了解决这些问题,本项目基于深度学习技术进行了吸烟检测系统的设计与实现,选择了PyTorch作为主要的深度学习框架,并结合了目标检测领域的主流算法YOLOv5来完成吸烟目标的自动识别和定位。通过深入的模型研究和技术实现,我们能够在图像中准确地检测吸烟行为,实现对吸烟活动的实时监测。原创 2023-12-20 15:59:37 · 2135 阅读 · 1 评论 -
基于yolov8的车牌检测训练全流程
YOLOv8 是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型,YOLOv8在之前版本的成功基础上引入了新功能和改进,以提高性能、灵活性和效率。YOLOv8支持全范围的视觉AI任务,包括检测, 分割, 姿态估计, 跟踪, 和分类。这种多功能性使用户能够利用YOLOv8的功能应对多种应用和领域的需求。原创 2023-11-20 21:09:25 · 2683 阅读 · 0 评论 -
yolo系列模型训练数据集全流程制作方法(附数据增强代码)
yolo系列的模型在目标检测领域里面受众非常广,也十分流行,但是在使用yolo进行目标检测训练的时候,往往要将VOC格式的数据集转化为yolo专属的数据集,而yolo的训练数据集制作方法呢,最常见的也是有两种,下面我们只讲述一种最常用的方法,也是我最常使用的。原创 2023-11-20 20:07:01 · 4887 阅读 · 6 评论 -
基于PP-YOLOE-SOD实现遥感场景下的小目标检测
目标边界框的宽高与图像的宽高比例小于一定值目标边界框面积与图像面积的比值开方小于一定值分辨率小于32*32像素的目标。如MS-COCO数据集像素值范围在[10,50]之间的目标。如DOTA/WIDER FACE数据集paddle从数据集整体层面提出了如下定义:目标边界框的宽高与图像的宽高比例的中位数小于0.04时,判定该数据集为小目标数据集。目前,小目标检测主要有以下几个难点:覆盖面积小,有效特征少小目标下采样后丢失问题,边界框难以回归,模型难以收敛。原创 2023-03-16 19:43:16 · 3949 阅读 · 13 评论 -
基于PP-OCRv3的车牌检测和识别
车牌识别技术是一种利用计算机视觉技术对车辆车牌进行自动检测、识别的技术。它可以通过摄像头实时捕获车辆车牌信息,并经过算法处理后得到车牌号码信息,实现对车辆的自动识别、管理和监控。车牌识别技术被广泛应用于城市交通管理、安防监控行业、停车场管理等领域,可以提高交通管理效率,降低人工劳动成本,保障公共安全。随着自动驾驶技术的快速发展,车辆自主性越来越高,丰富的实时数据也为车牌识别技术的运用提供了更多可能性。未来,车牌识别技术将会更加智能化、精准化,成为城市交通管理、智慧安防等领域的重要组成部分。原创 2023-06-01 09:22:51 · 1302 阅读 · 0 评论 -
PaddleClas套件——PP-ShiTuV2模型详解
主体检测是目前应用非常广泛的一种检测技术,它指的是检测出图片中一个或者多个主体的坐标位置,然后将图像中的对应区域裁剪下来进行识别。主体检测是识别任务的前序步骤,输入图像经过主体检测后再进行识别,可以过滤复杂背景,有效提升识别精度。考虑到检测速度、模型大小、检测精度等因素,最终选择 PaddleDetection 自研的轻量级模型作为 PP-ShiTuV2 的主体检测模型。特征提取是图像识别中的关键一环,它的作用是将输入的图片转化为固定维度的特征向量,用于后续的向量检索。一个好的特征需要具备。原创 2023-03-17 18:44:38 · 3207 阅读 · 2 评论 -
PaddleDetection目标检测数据准备——VOC数据集和COCO数据集
VOC数据是每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。图片对应的xml文件内包含对应图片的基本信息,比如文件名、来源、图像尺寸以及图像中包含的物体区域信息和类别信息等。filename,表示图像名称。size,表示图像尺寸。包括:图像宽度、图像高度、图像深度。object字段,表示每个物体。包括:标签说明name物体类别名称pose关于目标物体姿态描述(非必须字段)truncated。原创 2023-03-13 21:06:03 · 2567 阅读 · 0 评论 -
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
【YOLOv8 注意事项】1.YOLOv8 的官方仓库和代码已上线,文档教程网址也刚刚更新。2. YOLOv8 代码集成在ultralytics项目中,目前看不会再单独创建叫做 YOLOv8 的项目。3.YOLOv8 即将有论文了!要知道 YOLOv5 自从 2020 年发布以来,一直是没有论文的。而 YOLOv8(YOLOv5团队)这次首次承认将先发布 arXiv 版本的论文(目前还在火速撰写中)。原创 2023-01-16 18:16:13 · 14082 阅读 · 4 评论 -
绝了,超越YOLOv7、v8,YOLOv6 v3.0正式发布
YOLOv6 全新版本v3.0正式发布!引入新的网络架构和训练方案,其中YOLOv6-S以484 FPS的速度达到45.0% AP,超过YOLOv5-S、YOLOv8-S,其代码刚刚开源。由于前段时间Ultralytics公司透露出V8的发布消息,美团也坐不住了,YOLO社区一直情绪高涨!随着中国农历新年2023(兔年)的到来,美团技术团队对YOLOv6进行了许多新的网络架构和训练方案的改进。此版本标识为YOLOv6 v3.0。原创 2023-01-16 15:23:40 · 3156 阅读 · 1 评论 -
【YOLO系列】YOLOv8算法(尖端SOTA模型)
众所周知,YOLOv5推出的时候,只推出了代码,没有发布论文。尽管其代码功能完善强大,但是由于没有原汁原味的论文,导致了大多数学者的遗憾。而今天,YOLOv5研发公司再次推出YOLO系列的YOLOv8模型,同时还爆料声称这次将会发布论文到。这对于大部分研究者而言无疑是一个很不错的福音。是由开发的一个前沿 SOTA 模型。它在以前 YOLO 版本的成功基础上,引入了新的功能和改进,进一步提升了性能和灵活性。原创 2023-01-11 11:29:41 · 9058 阅读 · 2 评论 -
深度学习中各个模型简介
深度学习模型简介原创 2023-01-06 18:29:47 · 425 阅读 · 2 评论 -
训练误差和泛化误差分别是什么,如何区分?
在我们学习机器学习或深度学习的时候,经常会遇见一些迷惑词汇,让人傻傻分不清,比如博主刚开始学习的时候,就没有太过于区分,导致一些地方弄混。今天我带领大家一起彻底分清两个概念~原创 2022-12-31 15:41:36 · 1605 阅读 · 4 评论 -
【机器学习】过拟合和欠拟合的详细介绍和解决方式
在讲解过拟合和欠拟合之前,我们需要补充一个新概念——泛化,相信很多朋友在学习机器学习或者深度学习的时候,经常看到泛化、泛化能力等一些词言,下面就由我向大家补充一下泛化的小概念~原创 2022-12-31 15:13:30 · 902 阅读 · 0 评论 -
softmax回归和交叉熵损失函数
线性回归模型适用于输出为连续值的情景。在另一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练。本节以softmax回归模型为例,介绍神经网络中的分类模型。原创 2022-12-31 14:11:28 · 311 阅读 · 0 评论 -
anchor——锚框详细介绍与实现
目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素为中心生成多个大小和宽高比(aspect ratio)不同的边界框。这些边界框被称为锚框(anchor box)。原创 2022-12-31 12:55:42 · 1703 阅读 · 1 评论 -
感受野和特征图
经典目标检测和最新目标跟踪都用到了RPN(region proposal network),锚框(anchor)是RPN的基础,感受野(receptive field, RF)是anchor的基础。本文介绍感受野及其计算方法,和有效感受野概念。同时也向大家补充特征图的相关知识~原创 2022-12-30 13:23:29 · 1097 阅读 · 0 评论 -
[Paddle Detection]基于PP-PicoDet行车检测(完成安卓端部署)
基于PP-PicoDet行车检测(完成安卓端部署)_哔哩哔哩_bilibili基于视觉深度学习的自动驾驶场景,旨在对车载摄像头采集的视频数据进行道路场景解析(行车检测),为自动驾驶提供一种解决思路。该项目使用bdd100k_car数据集训练,并完成了安卓部署。现如今,汽车在日益普及人们的生活,再给人们带来极大便利的同时也造成了拥堵的交通更为频发的交通事故。通过行车检测不仅能够更好的帮助司机检查路况,并且还能够更好的规化当前的路程管理,减轻道路的拥堵情况。 在车辆驾驶中主要考验的是司机如何应对其他行驶车辆的可原创 2022-12-28 09:29:36 · 1499 阅读 · 3 评论 -
[Paddle Detection]基于PP-YOLOE+实现道路场景目标检测及部署
该项目着眼于基于视觉深度学习的自动驾驶场景,旨在对车载摄像头采集的视频数据进行道路场景解析,为自动驾驶提供一种解决思路。利用YOLO系列模型PP_YOLOE+完成车辆检测实现一种高效高精度的道路场景解析方式,从而实现真正意义上的自动驾驶,减少交通事故的发生,保障车主的人身安全。数据集地址视频数据: 超过1,100小时的100000个高清视频序列在一天中许多不同的时间,天气条件,和驾驶场景驾驶经验。视频序列还包括GPS位置、IMU数据和时间戳。道路目标检测。原创 2022-12-27 17:51:22 · 4400 阅读 · 9 评论 -
【百度AI Studio】利用PaddleDetection框架的行车检测
该项目着眼于基于视觉深度学习的自动驾驶场景,旨在对车载摄像头采集的视频数据进行道路场景解析,为自动驾驶提供一种解决思路。利用轻量级检测模型PP-PicoDet完成车辆检测实现一种高效高精度的道路场景解析方式,从而实现真正意义上的自动驾驶,减少交通事故的发生,保障车主的人身安全。在行车检测方面,现有检测模型可以实现多种类型的车辆检测,然而,一方面,检测模型在速度和精度上存在矛盾,对于精度较高的模型,如两阶段检测网络Faster R-CNN,其FPS较低,无法满足实时检测,因此其商用价值受到很大限制。另一方面,原创 2022-12-06 17:58:39 · 1650 阅读 · 0 评论