AI大模型手机部署指南:Llama、QWen、Gemma、Deepseek免费开源

AI大模型在PC端上部署早已司空见惯,标准环境基本上都是:Ollama+AnythingLLM+HuggingFace+AI大模型版本。如何能在手机客户端上部署AI大模型呢?今天就带大家一起来实际操作一下。

部署肯定离不开安装包,咱们以github上的一个开源项目PocketPal为例,给大家演示如何完成安装与配置过程。小白也能操作明白如何利用手机调用这些大模型进行对话和问答,无需连接云端。

保护隐私的同时大幅降低延迟,对喜欢AI的用户是个非常好的实用软件工具。部署非常简单,无需任何设置点点手指头下载安装即可。

由于我使用的是安卓手机,这里就跟大家演示一下安卓手机的操作过程。文章结尾附IOS版本下载链接。

  Google Store应用商店下载

选择Gemma模型下载

验明身份

主要功能
  • • 离线AI辅助:无需联网,语言模型直接在设备上运行

  • • 模型灵活:支持下载并切换多个 SLM,如 DeepSeek R1、Danube 2 和 3、Phi、Gemma 2、Qwen 等

  • • 自动卸载/加载:应用后台运行时,通过卸载模型自动管理内存

  • • 推理设置:可自定义模型参数,包括系统提示、温度、BOS 令牌和聊天模板

  • • 实时性能指标:生成 AI 响应时,可查看每秒令牌数及每个令牌的毫秒数

Hugging Face集成

  PocketPal AI 最新版现已与 Hugging Face 模型集成!在应用内可以直接从 Hugging Face Hub 浏览、下载和运行模型。大家可以根据自己手机的配置大小来选择适合自己的AI模型

离线安装包下载

  GitHub 项目地址:https://github.com/a-ghorbani/pocketpal-ai/releases/tag/v1.8.12

IOS版本下载链接:https://apps.apple.com/us/app/pocketpal-ai/id6502579498

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,用户想了解如何使用Ollama部署私有的大型模型知识库。我需要先整理已有的引用内容,看看有哪些相关的步骤和注意事项。 首先,根据引用[1]提到的Ollama+MaxKB部署本地知识库,可能需要结合这两个工具。引用[3]详细说明了如何用Ollama部署本地模型,包括模型选择和运行命令。引用[4]提到环境变量的配置,避免模型占用C盘空间。引用[2]则提到了大模型的应用开发阶段,可能需要涉及到大模型平台的使用。 接下来,我需要将这些信息结构化。首先安装Ollama,然后配置存储路径,接着选择适合的模型,比如Qwen或者Gemma,这些在引用[3]中都有提到。运行模型后,如何结合MaxKB搭建知识库呢?引用[1]提到MaxKB用于部署,可能需要安装并配置MaxKB与Ollama的API对接。 可能还需要注意模型的管理,比如如何加载多个模型,以及知识库的数据准备和处理步骤。引用[3]提到了初学者适合使用较小的模型如Gemma 2B,这可能对用户有帮助。同时,引用[2]中的第七阶段提到使用成熟大模型构建应用,可能需要参考这些模型的文档。 用户的问题还可能涉及到实际应用中的优化和常见问题,比如性能调优或者存储配置,这些在引用[4]的环境变量设置中已经部分解答。此外,确保步骤清晰,分阶段说明,从安装到部署再到应用,让用户能够逐步操作。 最后,生成相关问题时要覆盖安装、配置、模型选择、集成应用和优化等方面,帮助用户全面了解部署过程中可能涉及的各个方面。</think>### 如何使用Ollama部署私有大型模型知识库 #### 一、环境准备与Ollama安装 1. **安装Ollama** - 访问[Ollama官网](https://ollama.ai/)下载对应操作系统的安装包,按指引完成安装。 - 验证安装:终端输入 `ollama --version`,显示版本号即成功[^3]。 2. **配置模型存储路径** - 默认模型存储在`C:\Users\<用户名>\.ollama\models`,可通过设置环境变量 `OLLAMA_MODELS` 指定自定义路径,避免占用系统盘空间[^4]。 #### 二、模型选择与部署 1. **选择适合的模型** - **推荐模型**:支持私有化部署的模型如 `qwen`(千问)、`llama2`、`gemma` 等。例如,`gemma:2b` 适合初学者,体积小且资源需求低[^3]。 - 查看可用模型列表:终端输入 `ollama list`。 2. **运行模型** ```bash ollama run qwen # 启动千问大模型 ``` 首次运行会自动下载模型文件到配置的存储路径。 #### 三、构建知识库系统 1. **集成MaxKB知识库工具** - MaxKB 是一个开源的本地知识库管理系统,支持与Ollama对接。部署步骤: - 下载MaxKB并安装(需Docker环境)。 - 配置MaxKB的模型接口,指向Ollama的API地址(默认 `http://localhost:11434`)[^1]。 2. **数据导入与处理** - 将知识文档(如PDF、TXT)上传至MaxKB,系统会自动解析并向量化存储。 - 通过Ollama的模型接口实现语义搜索和问答功能[^1]。 #### 四、进阶配置与优化 1. **多模型管理** - 使用 `ollama pull <模型名>` 下载其他模型(如 `mistral`),通过 `ollama run <模型名>` 切换使用。 2. **性能调优** - **GPU加速**:若设备支持GPU,安装CUDA驱动后,Ollama可自动调用GPU资源。 - **内存优化**:调整模型参数(如 `num_ctx` 控制上下文长度)减少资源占用[^2]。 #### 五、验证与测试 ```bash curl http://localhost:11434/api/generate -d &#39;{ "model": "qwen", "prompt": "知识库部署的核心步骤是什么?" }&#39; ``` 通过API测试模型与知识库的联动响应。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值