转行大模型产品经理必备的五个关键思维方式,一定记得收藏!

实话说我在转型成为产品经理前,对产品经理岗位认知的局限性,与宇航员有一拼——只知其名,不知其本,更无从谈起思维方式以及它的价值。

当回首过往十年的产品生涯时,对产品经理的思维方式有了一些认知,所以把它们从我的脑子里“掏出来”,希望对产品经理岗位有兴趣的你有所启发。

什么是思维方式?

思维方式就是“你习惯怎么想问题”,就像有人习惯用筷子吃饭,有人习惯用叉子——虽然都能吃饱,但过程不一样。

它是一种科学却玄乎的软能力,就像张无忌一样,当你学会九阳神功、吸星大法后,你觉得自己很厉害,而实际最厉害的武功是太极——让你忘记一切招式、秘籍,只是随心而动,随事而变,这才是思维方式的高阶玩法。

产品经理就是思维方式的代名词,你习惯怎么想问题,决定了你的上限。

今天咱们一起从两个视角来看看:高阶全局视角、初阶实用视角,重点会落到后者(原因你懂的,哈哈哈)。

第一个视角是高阶全局视角。让你对产品经理所需的全局思维方式有初始认知(如下图),仅此而已——冰冻三尺非一日之寒,一口吃不成个胖子——它们都在告诫我们做事情的循序渐进。

图片

第二个视角是初阶实用视角。

思维全景图可能让你望而却步,我也是懵懵懂懂的在实际工作中,慢慢淬炼,甚至至今,依然有不少思维方式(比如商业思维、本质思维、框架思维等),运用的不是很纯熟。原因也简单,就是实际工作中运用的不多——神枪手都是子弹喂出来的。

咱们就聚焦初级产品经理高频使用的五大思维方式,让你转型路上做到有的放矢。

它们是:用户思维、问题思维、目标导向(优先级思维)、数据思维、成长性思维。

图片

用户思维——商业的起点是用户受益

当企业将 “用户第一” 写入价值观时,这不仅是一句口号,更是产品创造的底层逻辑。产品经理作为连接商业目标与用户需求的桥梁,践行用户思维既是对企业价值观的具象化,更是挖掘需求本质的核心方法论。

俞军产品方法论中,两条原则直指用户思维的核心:

  1. “产品经理首先是用户”:要求产品经理跳出职业身份,以真实使用者的视角体验产品,感知痛点与痒点;

  2. “站在用户视角看待问题”:强调摒弃 “自我中心主义”,将决策基准从 “我认为” 转向 “用户需要”。

这种思维的本质,是将用户视为产品定义的起点而非终点 —— 不是被动满足需求,而是主动解构需求背后的真实动机。

如何训练用户思维?在互联网产品领域,腾讯提出的实操模型极具参考价值:

  • 10 个用户深访:每月与 10 名核心用户深度对话,挖掘隐性需求(如通过用户抱怨 “操作复杂”,发现流程冗余问题);

  • 100 个用户动态追踪:关注 100 个用户的博客、社区发言等,捕捉场景化反馈(如用户晒出 “打卡失败” 截图,暴露考勤系统定位逻辑缺陷);

  • 1000 条体验数据收集:通过问卷、日志等渠道汇总 1000 条体验反馈,用数据描摹用户画像(如发现 30% 差评集中在 “导出功能难找”)

面向B端产品设计时,用户思维也至关重要。你可采取:

  • 轮岗:产品经理参与客户岗位实操(如驻场辅导老师或考勤专员的实际工作),理解业务链条中的真实卡点;

  • 场景化调研:深入客户办公现场,记录不同角色(决策者 / 执行者 / 管理者)的使用场景(如 HR 在薪酬核算时,同时打开 3 个系统的低效场景);

从 C 端到 B 端,用户群体与需求在变,而用户思维不变,核心始终是:把自己变成 “用户的翻译官”,站在用户视角上,将表象诉求转化为底层需求,让产品成为用户问题的最佳解决方案。

问题思维——爱上问题,而不是解决方案

人性中潜藏着一种本能 —— 面对问题时,我们往往下意识选择逃避或寻找捷径。但产品经理的核心使命,恰恰是打破这种本能,学会 “与问题共舞”。

这种思维模式的本质,是将 “问题” 视为创造价值的起点,而非急于奔向看似完美的解决方案。

产品工作的本质,是在【问题-需求-解决方案】三者之间建立动态平衡:

  • 问题:用户未被满足的痛点或场景矛盾(如考勤专员难以判断员工出勤异常的真实原因);

  • 需求:问题背后的核心诉求(如 “确认考勤真实性” 的本质是 “降低人工核验成本”)

  • 解决方案:针对需求设计的具体功能或服务(如 “异常自动提醒 + 电子签名确认” 功能,将被动核验转为主动协同)

同时,你需区分 “需求” 与 “解决方案”,它是问题思维的试金石。

当用户直接提出 “功能诉求” 时,往往暗藏着对 “解决方案” 的预设,而非真实问题。例如:

  • 用户说:“需要批量导入附件功能”,实则是在表达 “数据录入效率低下” 的问题;

  • 用户提出:“希望导出考勤异常结果”,背后可能是 “数据查询效率低下” 的需求。

此时,产品经理需要扮演 “问题侦探”:不被表面方案迷惑,通过追问挖掘本质 ——“为什么需要批量导入?”“导出结果的用途是什么?”,从而将 “解决方案诉求” 转化为 “问题定义”,再基于真实问题设计更底层的解决方案。

目标导向——以终为始的产品管理哲学

产品经理常被戏称 “带‘经理’头衔的打杂专员”—— 虽手握产品方向决策权,却无传统管理岗的人员管辖权。

在资源有限、多方博弈的立项环境中,目标导向如同罗盘,不仅能帮你穿透 “为什么做” 的质疑,更能将碎片化的需求、资源与争议、事务优先级,凝聚成指向明确的行动路径。

当产品推进遭遇多方挑战时,清晰的目标是唯一的 “共识转换器”:

  • 面对老板的资源质疑:“为什么投入人力做排班功能?” → 用目标量化回应:“当前 30% 客户因排班效率低流失,优化后预计提升客户留存率 10%”;

  • 回应客户的排期追问:“为什么我的需求还没做?” → 以目标优先级排序:“A 需求影响核心用户 80% 的考勤效率,B 需求属于边缘场景,当前目标聚焦核心流程提效”;

  • 化解销售的竞品压力:“竞品都有这个功能,我们为什么不做?” → 用目标差异化破局:“当前目标是打造‘轻量级考勤’优势,竞品功能虽全但复杂度高,与我们‘3 分钟快速排班’的目标冲突”;

  • 说服研发的成本顾虑:“技术实现成本太高” → 从目标 ROI 评估:“投入 20 人 / 月实现该功能,预计解决20家客户需求,带来客户续约率提升 5%,值得投入”。

真正的目标导向,是将 “目标” 注入每个决策环节:

  • 需求评审时:用 “是否支撑核心目标” 作为筛选标准,而非 “需求提出者的级别高低”;

  • 资源争夺时:用 “目标贡献度” 说服老板:“投入 A 项目可直接达成 30% 的年度营收目标,B 项目仅贡献 5%”;

  • 方案妥协时:以 “目标底线” 为边界:“界面美观度可妥协,但排班算法的准确率必须达到 95% 以上,这是目标红线”。

从立项时的资源撬动,到落地中的争议调和,目标导向的本质是:用 “结果定义” 反推 “过程选择”,让产品经理在没有行政权力的情况下,依然能以 “目标 Owner” 的身份,牵引团队穿越不确定性,抵达最终的商业与用户价值彼岸。

数据思维——从 “观点驱动” 到 “事实驱动”

人类天生习惯用 “观点” 诠释世界,但在产品决策中,主观判断往往是偏差的根源 —— 产品经理的视角未必比用户更精准,研发的技术执念也可能偏离真实需求。当 “我认为” 取代 “数据证明” 时,产品迭代难免陷入 “自嗨式优化” 的陷阱。

数据思维绝非简单的 “用数字说话”,而是建立一套以客观事实为基准的决策逻辑:

  • 观点表达:摒弃 “这个功能用户肯定喜欢” 的臆断,改为 “用户调研显示 65% 的餐饮客户期待智能排班功能”;

  • 目标设定:跳出 “提升客户留存” 的模糊方向,明确 “Q3 通过排班效率优化,将餐饮客户流失率从 40% 降至 34%”;

  • 想法验证:避免 “我觉得流程没问题” 的主观判断,用 “AB 测试显示方案 A 的任务完成率比方案 B 高 22%” 作为依据;

  • 需求优先级:避免“销售说这个功能很重要,先做”,用“数据显示该功能覆盖 80% 高频使用场景,优先级 TOP1”;

  • 效果评估:避免“感觉这次改版效果还不错”,用“改版后核心流程转化率提升 18%,用户满意度 NPS+12 分”代替。

当数据采集受限(如新产品冷启动期),数据思维要求转向 “场景化写实”:

  • 线下蹲点法:在餐饮门店观察 3 天,记录服务员 “用 Excel 排班时频繁切换表格,平均耗时 2.1 小时” 的真实操作场景;

  • 用户日志分析:收集制造业工厂 10 名工人的操作记录,发现 “加班申请流程需跳转 3 个系统,导致33% 的申请漏填”;

  • 故事板还原:用图文记录客服与客户的沟通对话,提炼出 “70% 的投诉集中在‘考勤数据无法对接财务系统’” 的核心矛盾。

真正的数据思维需要辩证视角,警惕“唯数据论”与“幸存者偏差”问题。有时,数据可能反而成为你决策的阻碍,尤其是在创新型的产品阶段。

成长型思维——产品与个人的双向进化引擎

“万物生长皆有时”—— 这句自然法则在产品领域同样适用。无论是一款现象级产品的迭代演进,还是产品经理从新手到专家的能力跃迁,成长型思维都扮演着破局者的角色:它拒绝 “一蹴而就” 的幻想,以 “持续进化” 为底层逻辑,在动态变化中寻找突破点。

首先是产品视角。优秀产品的诞生从不是灵光一现的偶然,而是遵循 “生长型迭代” 的科学规律:

1. 种子期:聚焦核心根系生长

微信 1.0 版本仅保留 “即时通讯” 基础功能,如同小树扎根,先解决 “用户沟通” 的核心需求,而非盲目堆砌朋友圈、小程序等复杂功能;

抖音初期以 “15 秒音乐短视频” 为单点突破,在算法推荐机制成熟后,才逐步拓展直播、电商等生态枝丫。

2. 成长期:基于反馈的柔性迭代

数据驱动进化:某考勤产品发现 “30% 用户放弃使用排班功能”,通过埋点数据发现 “班次规则配置复杂度” 是主因,遂将配置步骤从 7 步简化至 3 步,使用率提升 45%;

场景化延伸:钉钉从 “企业 IM” 起步,在服务中小企业过程中,根据用户 “考勤 + 审批 + 薪资” 的连贯需求,逐步生长出 “智能人事” 模块。

3. 成熟期:生态化破圈生长

美团从 “团购” 单一业务出发,通过 “用户到店消费” 的场景延伸,逐步拓展外卖、酒店、旅游等业务,形成 “本地生活服务生态树”;

成长型思维的核心是:不追求 “完美初始版本”,而是建立 “问题收集 – 方案验证 – 快速迭代” 的生长机制,如同树木根据气候环境调整枝叶密度。

我们可以采取两个具体的工具:

  1. 版本演进地图:遵循以终为始,全面设计;以始为终,最小闭环的方法论,像记录树的年轮一样,用时间轴标注每个版本解决的核心问题(如 “V1.0 解决考勤打卡,V2.0 解决排班效率,V3.0 解决薪资对接”);

  2. 用户生长档案:跟踪典型用户从 “试用期” 到 “深度依赖” 的全周期行为,发现 “企业从 50 人增长到 200 人时,对考勤系统的需求从‘打卡’转向‘智能排班 + 权限管理’”。

其次是个人视角。产品经理从 “功能执行者” 到 “战略操盘手” 的蜕变,同样需要打破 “固定能力边界” 的认知:

1. 新手期:在单点突破中积累生长势能

从 “设计一个考勤审批流程” 开始,通过 3 次版本迭代优化 “异常审批通过率” 从 60% 提升至 92%,理解 “用户操作路径” 的设计逻辑;

成长型思维要求:不轻视 “小功能”,而是在每一次需求落地中提炼普适性方法(如 “如何用流程图拆解复杂业务”)。

2. 进阶期:在跨领域实践中拓展能力半径

参与从 “需求调研” 到 “上线复盘” 的全流程,在负责 “薪资计算模块” 时,主动学习财务规则与系统对接逻辑,形成 “业务 + 技术 + 数据” 的复合视角;

某 B 端产品经理为理解制造业客户,驻厂 3 周跟产线工人学习排班流程,将 “车间实操场景” 转化为产品设计中的 “防错机制”,这是典型的 “场景生长型” 学习。

3. 专家期:在行业变迁中重构认知框架

当 AI 技术兴起时,放弃 “固守传统考勤模式”,主动研究 “人脸识别 + 智能排班算法” 的应用可能,带领团队从 “工具型产品” 向 “AI 赋能平台” 转型;

成长型思维的终极体现:将 “变化” 视为养分 —— 无论是技术迭代、行业政策还是用户习惯改变,都能转化为个人能力树的新枝芽。

具体来说,建议你两个小工具:

  1. 能力缺口雷达图:定期评估 “用户理解、业务理解、数据分析、设计能力” 等维度的能力值,如发现 “技术架构认知” 薄弱,制定 “每月研读 1 份技术白皮书” 的生长计划;

  2. 复盘生长日志:将每次项目落地视为 “能力树苗” 的一次灌溉,记录 “本次迭代学会了‘如何用 ROI 说服研发投入’”,形成可复用的经验库和方法论。

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。 

 这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

 

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值