快速学会一个算法:层次聚类

作者名片
🤵‍♂️ 个人主页:@抱抱宝
😄微信公众号:宝宝数模AI(见文末)
✍🏻作者简介:阿里云专家博主 | 持续分享机器学习、数学建模、数据分析、AI人工智能领域相关知识,和大家一起进步!
🐋 如果文章对你有帮助的话,
欢迎👍🏻点赞📂收藏 +关注



在机器学习领域,聚类分析是一种重要的无监督学习方法,广泛应用于数据挖掘、图像处理、市场细分等多个领域。本文将深入探讨层次聚类算法,包括其基本介绍、算法原理以及一个完整的案例分析,帮助读者全面理解和掌握这一经典的聚类方法。

一、算法介绍

1.1 什么是层次聚类

层次聚类(Hierarchical Clustering)是一种通过构建层次结构来组织数据的聚类方法。与其他聚类算法不同,层次聚类不需要预先指定簇的数量,而是通过构建一个树状结构(树状图,Dendrogram)来展示数据的分层关系。层次聚类主要分为两类:

  • 凝聚层次聚类(Agglomerative Hierarchical Clustering):自底向上,先将每个数据点视为一个单独的簇,然后逐步合并最相似的簇,直到所有数据点合并为一个簇或达到预定的簇数量。

  • 分裂层次聚类(Divisive Hierarchical Clustering):自顶向下,先将所有数据点视为一个整体簇,然后逐步分裂成更小的簇,直到每个簇仅包含一个数据点或达到预定的簇数量。

二、算法原理

层次聚类的核心在于如何衡量簇与簇之间的相似性或距离,以及如何选择合适的链接方法来决定簇的合并或分裂。以下将详细介绍这些关键概念。

2.1 距离度量

在层次聚类中,常用的距离度量包括:

  • 欧氏距离(Euclidean Distance)

    d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

  • 曼哈顿距离(Manhattan Distance)

    d ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i| d(x,y)=i=1n<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抱抱宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值