博主介绍:
✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。技术范围:
我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。主要内容:
我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。🍅获取源码请在文末联系我🍅
温馨提示:文末有 CSDN 平台官方提供的阿龙联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的阿龙联系方式的名片!
目录:
为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
一、详细操作演示视频
在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
承诺所有开发的项目,全程售后陪伴!!!
2 相关工具及介绍
2.1 Mysql数据库技术介绍
在现代信息系统开发中,数据库技术是数据存储、查询和管理的核心支撑,直接关系到系统的稳定性与性能表现。在本垃圾邮件过滤系统中,MySQL被选为主要的数据库管理系统[6]。作为一款高效、稳定、开源的关系型数据库,MySQL在用户信息管理、垃圾邮件数据存储、预测结果记录及统计分析等方面发挥了重要作用,其广泛的应用场景和对高并发查询的支持,使其成为本系统开发的理想选择。
MySQL的显著优势在于支持多种存储引擎,其中 InnoDB 引擎 是最常用的一种。InnoDB 提供事务处理能力和外键约束功能,能够确保数据的完整性和一致性。例如,在垃圾邮件过滤系统中,用户与预测记录之间的关系、邮件分类数据与结果记录的关联均依赖外键来实现高效管理。MySQL 的查询优化器和索引机制进一步提升了查询性能,使系统能够高效处理用户在垃圾邮件预测记录查询、统计分析及邮件管理等功能中的高频请求。
MySQL 的灵活性和可扩展性为系统的开发与优化提供了便利。通过使用图形化管理工具(如 MySQL Workbench),数据库设计与调试更加直观,开发效率显著提升。在系统中,数据库表的规范化设计确保了数据的一致性与稳定性,主要数据表包括用户信息表[7]、邮件数据表、预测记录表、管理员表等,通过外键关联实现数据间的高效联动。为了优化性能,系统在设计中采用了分区表和多层次索引机制,有效提升了数据查询效率,确保系统能够快速响应垃圾邮件过滤和数据统计的复杂查询请求。
在数据交互层面,MySQL 可无缝集成到 Flask 框架中,通过 ORM(对象关系映射)工具如 SQLAlchemy 实现数据模型与数据库的映射管理,同时支持事务处理机制,结合 ACID(原子性、一致性、隔离性、持久性)特性,确保系统数据操作的可靠性。当用户提交垃圾邮件预测任务时,数据库能够通过事务管理确保操作的完整性[8],即使发生异常,也能通过回滚机制恢复系统数据,防止数据不一致或丢失。
通过全面运用 MySQL 技术,本垃圾邮件过滤系统实现了高效稳定的数据存储、快速响应的查询能力和灵活的管理机制,为系统的功能实现与用户体验优化提供了强有力的支持。MySQL 的引入不仅满足了系统在大规模数据管理和处理方面的需求,同时显著提升了系统的可靠性和扩展性,确保平台能够稳定运行并处理多用户场景下的高频交互与数据存储需求。
2.2 Pytharm编译器介绍
在基于Python、Flask和Vue.js技术开发的垃圾邮件过滤系统设计与实现过程中,选择一款高效且功能强大的集成开发环境(IDE)对提升开发效率和代码质量至关重要。PyCharm 是目前最受欢迎的Python开发工具之一[9],凭借其智能化的代码辅助功能、强大的调试工具、内置的框架支持和丰富的插件生态,成为本项目后端开发的重要支撑工具。在本系统开发中,PyCharm 作为核心开发工具,与 Flask 框架深度集成,为后端功能开发与调试提供了全面的支持。
PyCharm 对 Python 语言的深度优化使其成为 Flask 项目开发的首选工具。其智能编辑器提供了代码自动补全、语法高亮、实时错误检测和快速重构功能,显著提高了开发效率和代码质量。例如,在开发垃圾邮件过滤模型时,PyCharm 的代码分析功能帮助开发者快速发现可能的错误并优化代码结构,确保模型逻辑的准确性。PyCharm 的内置终端和运行环境管理工具,使开发者能够快速配置虚拟环境并安装所需的依赖库,如 Flask、SQLAlchemy 和 scikit-learn,简化了开发环境的搭建过程。
在项目调试阶段,PyCharm 提供了强大的调试工具,包括断点调试、变量实时监控和代码性能分析功能。这些工具使开发者能够快速定位和解决问题,特别是在实现垃圾邮件分类模型时[10],PyCharm 的调试功能帮助开发者验证每一步骤的模型输出,确保分类结果的准确性和一致性。此外,PyCharm 对 Flask 的框架支持使开发者能够轻松启动本地服务器并实时查看日志输出,从而加速后端功能模块的开发与调试进程。
针对系统中涉及的数据库操作,PyCharm 内置的数据库管理工具为本项目提供了极大的便利。PyCharm 可以直接连接 MySQL 数据库,通过图形化界面实现数据查询、表结构设计和 SQL 语句调试等操作,有效降低了数据库开发的复杂性。例如,在设计用户表、邮件数据表和预测记录表时,PyCharm 的外键设计功能确保了数据之间的关联性和完整性;同时,其复杂查询调试工具帮助开发者优化查询语句,提高了系统的查询性能和稳定性。
PyCharm 的插件生态系统同样为项目开发提供了强有力的支持。例如,通过安装 Flask 和 Vue.js 插件,PyCharm 可以在前后端分离的开发模式中表现出强大的协同能力,开发者能够在同一个环境中完成后端逻辑实现和前端接口调试,极大地提升了开发效率[11]。PyCharm 支持一系列实用插件,如代码格式化工具、性能监控插件和任务管理工具,进一步优化了开发体验。在本系统开发中,结合这些插件的使用,不仅提升了代码的规范性,还为后续功能的扩展和优化提供了良好的支持。
通过使用 PyCharm 作为开发工具,本垃圾邮件过滤系统在开发效率、代码质量和运行性能等方面得到了显著提升。PyCharm 通过深度集成 Flask 框架、数据库管理功能和调试工具,为系统开发提供了全面支持,有效降低了开发复杂性,为系统的高效实施与后续优化提供了重要的技术保障
2.3 Flask框架简介
在基于Python开发的垃圾邮件过滤系统中,Flask 框架作为核心技术,为系统的设计与实现提供了全面支持。Flask 是一款轻量级的 Python Web 框架,以其灵活的架构和简单易用的特性,成为众多中小型项目以及快速原型开发的首选框架。与其他重量级框架[12]( Django)相比,Flask 更注重开发者对框架的自由控制,支持模块化设计和扩展能力,特别适合构建功能清晰、逻辑简洁的 Web 应用。
在本垃圾邮件过滤系统的开发中,Flask 的微内核设计显著提升了项目开发效率。传统 Web 框架可能需要预先配置复杂的项目结构,而 Flask 通过简化的初始化和灵活的配置方式,让开发者能够快速搭建系统基础框架,并专注于功能逻辑的开发。Flask 内置的开发服务器和调试工具为代码的快速测试和调试提供了极大便利,尤其是在实现用户注册登录、垃圾邮件预测接口及系统公告等功能模块时,大幅缩短了开发周期。
针对本系统的功能需求,Flask 提供了强大的 RESTful 接口开发能力,用于实现用户与系统之间的高效数据交互。例如,在垃圾邮件分类功能中,Flask 通过路由机制轻松构建了预测接口,支持前端快速调用后端分类模型,并返回实时预测结果。通过与 Flask 扩展库(如 Flask-SQLAlchemy、Flask-WTF 和 Flask-Migrate)结合,系统进一步优化了数据管理、表单验证和数据库迁移功能。例如,Flask-SQLAlchemy 提供了对 MySQL 数据库的 ORM 支持,使用户表、预测记录表的设计与操作更加简便和高效。
Flask 的可扩展性还体现在对第三方库的支持上。在本系统中,Flask 与机器学习框架(如 scikit-learn)无缝集成,通过分类模型对垃圾邮件数据进行分析和预测,同时利用 Flask 的中间件机制,轻松实现跨域访问控制、请求过滤和日志记录等功能,进一步提升了系统的安全性与稳定性。
Flask 的模块化设计为系统在未来的功能扩展提供了重要保障。例如,当需要增加更多预测模型或支持多语言环境时,可以通过独立的蓝图(Blueprints)快速扩展系统功能,而不会影响现有模块的稳定性。
通过使用 Flask 作为开发框架,本垃圾邮件过滤系统在开发效率、灵活性和功能可扩展性等方面得到了显著提升。Flask 的轻量化特性与丰富的扩展能力确保系统能够快速开发和部署,同时为后续优化和扩展功能奠定了坚实的基础。
2.5 Mybatis技术简介
在基于Python开发的垃圾邮件过滤系统中,分类模型的构建与优化是核心环节,直接影响到系统的垃圾邮件识别能力和预测准确性。scikit-learn 作为一款功能强大且广泛使用的机器学习库,为模型的开发与评估提供了全面而高效的支持。与其他机器学习库相比,scikit-learn 提供了高度模块化的接口设计,涵盖了分类、回归、聚类、降维等多种任务的算法实现,同时对数据预处理、特征选择和模型验证等功能提供了便捷的工具,特别适用于构建数据驱动的智能系统。
scikit-learn 的核心优势在于其对经典机器学习算法的高度封装和易用性。在本系统中,垃圾邮件过滤的核心任务是邮件内容的分类,而朴素贝叶斯算法(Naïve Bayes)是最常用的文本分类算法之一。通过 scikit-learn 的 MultinomialNB 模块,可以轻松实现基于邮件词频的分类模型,并通过简单的 API 快速完成模型的训练、测试与预测流程。例如,系统通过对邮件内容进行特征提取(如词频统计和TF-IDF转换),结合 scikit-learn 的特征选择工具优化训练数据,提高了模型的分类性能。
scikit-learn 提供了丰富的数据预处理功能,包括缺失值填充、数据归一化、特征标准化等,为模型输入数据的清理与规范化提供了支持。在本系统开发中,邮件数据的处理需要包括内容解析、特征提取和标签生成等多个步骤,scikit-learn 的 Pipeline 工具将这些步骤整合到一体化流程中,不仅简化了代码逻辑,也提高了数据处理的效率。
scikit-learn 的另一个显著特点是其全面的模型评估与优化功能。在本系统的开发过程中,模型的性能通过交叉验证、混淆矩阵和指标分析(精确率、召回率和 F1 分数)进行全面评估。scikit-learn 提供的 GridSearchCV 和 RandomizedSearchCV 工具,支持对模型的超参数进行自动化调优。例如,通过调整朴素贝叶斯算法的平滑参数,显著提高了垃圾邮件分类的精度和召回率。此外,scikit-learn 的 learning_curve 和 validation_curve 工具帮助开发者可视化模型的学习效果,进一步优化了模型的表现。
scikit-learn 的扩展性和易集成性同样为系统开发提供了支持。在本系统中,scikit-learn 与 Flask 框架无缝结合,通过后端接口实现模型预测功能,支持实时的垃圾邮件分类任务。此外,结合 scikit-learn 的模型持久化工具(如 joblib),开发者能够轻松保存和加载模型,确保系统在实际运行中能够快速响应用户的预测请求。
通过引入 scikit-learn,本垃圾邮件过滤系统能够高效构建和优化分类模型,在处理邮件数据的特征提取、分类和预测任务中表现出色。scikit-learn 的高度模块化设计不仅满足了系统在垃圾邮件过滤任务中的复杂需求,还为系统的长期优化和扩展提供了强有力的技术支持。其便捷的算法实现和全面的工具生态,为系统的智能化运行和用户体验提升提供了坚实的保障。
2.7 Vue.js技术简介
在基于微信小程序的中草药研学平台前端开发中,Vue.js框架承担了用户界面构建的核心任务,为系统提供了高效、灵活且现代化的前端开发解决方案。Vue.js是一款轻量级、渐进式的JavaScript框架,以其响应式数据绑定、组件化开发和优秀的性能表现[14],成为构建动态单页应用(SPA)的重要工具之一,非常适合满足中草药研学平台中丰富的交互需求。
Vue.js的核心优势在于声明式渲染和组件化开发模式。开发者可以将页面拆分为多个独立的功能模块,并使用Vue组件进行开发。每个组件可以独立定义逻辑和样式,同时能够灵活组合和复用,显著提高代码的可维护性和开发效率。在中草药研学平台中,核心功能如中草药信息展示模块、搜索栏、学习视频播放模块、用户个人中心以及科普文章的动态加载等,都可以通过Vue组件进行独立实现,从而降低开发复杂度并确保页面的结构化设计。
Vue.js还提供了Vue Router和Vuex等功能组件,进一步优化了系统的路由管理和状态管理。通过Vue Router,中草药研学平台能够实现单页应用的前端路由跳转,保证用户在访问不同页面(如中草药信息页面、学习视频页面和科普文章页面)时获得流畅、无刷新式的体验。Vuex作为全局状态管理工具,帮助系统在多个组件间共享和管理数据,避免了因数据同步不一致导致的错误。在中草药收藏、用户操作记录、个人设置和推荐算法等功能中,Vuex有效确保了数据的统一性和实时性,从而提升了系统的性能和用户体验。
Vue.js的响应式数据绑定特性使其在动态内容更新中表现尤为突出。对于中草药推荐、论坛交流更新以及学习视频播放进度展示,Vue.js能够实时捕捉数据的变化并自动更新对应的页面内容,无需开发者手动操作DOM。这种高效的响应式更新机制不仅减少了开发工作量,还显著提升了用户交互的流畅性。
2.8 贝叶斯分类算法介绍
贝叶斯分类算法是一种基于贝叶斯定理的概率模型,广泛应用于文本分类、垃圾邮件过滤等领域。该算法通过计算数据特征在给定类别下的条件概率,结合先验概率,预测数据所属的类别。在本垃圾邮件过滤系统中,选用朴素贝叶斯算法作为核心分类模型,其假设特征之间相互独立,极大地简化了复杂性,同时保证了算法在大规模数据处理中的高效性。
朴素贝叶斯算法的主要特点在于其易于实现、训练速度快、对小规模数据表现良好,并且能够很好地处理多类别分类任务。在本系统中,邮件数据通过特征提取生成词频矩阵或TF-IDF向量后输入模型,朴素贝叶斯算法通过学习训练集中的词汇分布与邮件类别关系,计算新邮件属于垃圾邮件或正常邮件的概率,从而完成分类预测。
相比其他机器学习算法,朴素贝叶斯算法在垃圾邮件过滤中具有显著优势:其对高维度特征空间有良好的适应性,特别适合处理文本数据;其次,其分类结果具有高度解释性,可以通过概率输出明确展示分类依据;此外,朴素贝叶斯模型对数据噪声和缺失值具有较强的鲁棒性,这使其在邮件内容不完整或噪声较多的情况下仍能保持较高的分类性能。
通过引入朴素贝叶斯算法,本垃圾邮件过滤系统实现了对邮件数据的精准分类,为用户提供高效可靠的垃圾邮件过滤功能。同时,算法的快速计算和低资源消耗特性,确保系统能够在大规模邮件处理场景中保持良好的性能,为垃圾邮件管理和信息安全提供了有力支持。
系统实现界面展示:
分类代码展示:
om sklearn.metrics import mean_squared_error,accuracy_score
from sklearn.metrics import confusion_matrix
pd.options.mode.chained_assignment = None # default='warn'
#获取当前文件路径的根目录
parent_directory = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
dbtype, host, port, user, passwd, dbName, charset,hasHadoop = config_read(os.path.join(parent_directory,"config.ini"))
#MySQL连接配置
mysql_config = {
'host': host,
'user':user,
'password': passwd,
'database': dbName,
'port':port
}
#获取预测可视化图表接口
@main_bp.route("/pythonizt4az4f/emailinformationforecast/forecastimgs", methods=['GET','POST'])
def emailinformationforecast_forecastimgs():
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, 'message': 'success'}
# 指定目录
directory = os.path.join(parent_directory, "api", "templates", "front", "emailinformationforecast")
# 获取目录下的所有文件和文件夹名称
all_items = os.listdir(directory)
# 过滤出文件(排除文件夹)
files = [f'upload/emailinformationforecast/{item}' for item in all_items if os.path.isfile(os.path.join(directory, item))]
msg["data"] = files
return jsonify(msg)
'''
预测接口,对模型进行训练并且运行得出预测结果
get、post请求
'''
@main_bp.route("/pythonizt4az4f/emailinformationforecast/forecast", methods=['GET','POST'])
def emailinformationforecast_forecast():
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, 'message': 'success'}
req_dict = session.get("req_dict")
connection = pymysql.connect(**mysql_config)
#获取训练数据
query = "SELECT emailtitle,sender, emailtype FROM emailinformation"
#处理缺失值
df = pd.read_sql(query, connection).dropna()
id = req_dict.pop('id',None)
req_dict.pop('addtime',None)
#数据预处理
emailtitle_encoder = LabelEncoder()
df['emailtitle'] = emailtitle_encoder.fit_transform(df['emailtitle'])
sender_encoder = LabelEncoder()
df['sender'] = sender_encoder.fit_transform(df['sender'])
emailtype_encoder = LabelEncoder()
df['emailtype'] = emailtype_encoder.fit_transform(df['emailtype'])
# 特征和目标值分离
X = df[[
'emailtitle',
'sender',
]]
y_true = df['emailtype']
# 特征标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 使用朴素贝叶斯算法
nb_model = GaussianNB()
nb_model.fit(X_scaled, y_true)
# 获取预测结果
y_pred = nb_model.predict(X_scaled)
#模型评估
accuracy = accuracy_score(y_true, y_pred)
conf_matrix = confusion_matrix(y_true, y_pred)
print("Accuracy:", accuracy)
print("Confusion Matrix:\n", conf_matrix)
#可视化结果
plt.figure(figsize=(8, 6))
plt.rcParams['font.sans-serif'] = ['SimHei','simhei'] # 使用黑体 SimHei
plt.rcParams['axes.unicode_minus'] = False # 解决负号 '-' 显示为方块的问题
sns.scatterplot(x=X_scaled[:, X_scaled.shape[1]-2], y=X_scaled[:, X_scaled.shape[1]-1], hue=y_pred, palette='viridis', style=y_true, s=100)
plt.title('朴素贝叶斯分类结果')
plt.xlabel('emailtitle')
plt.ylabel('sender')
plt.legend(title='Cluster')
directory =os.path.join(parent_directory,"api", "templates","front","emailinformationforecast","nb_prediction.png")
os.makedirs(os.path.dirname(directory), exist_ok=True)
plt.savefig(directory)
plt.clf()
plt.close()
#去预测
new_data = pd.DataFrame([req_dict])
try:
new_data['emailtitle'] = emailtitle_encoder.transform(new_data['emailtitle'])
except:
new_data['emailtitle']=[0]
try:
new_data['sender'] = sender_encoder.transform(new_data['sender'])
except:
new_data['sender']=[0]
new_data = new_data[[
'emailtitle',
'sender',
]]
new_data_scaled = scaler.transform(new_data)
new_pred_adjusted = nb_model.predict(new_data_scaled)
df = pd.DataFrame(new_pred_adjusted, columns=[
'emailtype',
])
df['emailtype']=df['emailtype'].astype(int)
df['emailtype'] = emailtype_encoder.inverse_transform(df['emailtype'])
#创建数据库连接,将DataFrame 插入数据库
connection_string = f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"
engine = create_engine(connection_string)
try:
if req_dict :
#遍历DataFrame,并逐行更新数据库
with engine.connect() as connection:
for index, row in df.iterrows():
sql = """
INSERT INTO emailinformationforecast (id
,emailtype
)
VALUES (%(id)s
,%(emailtype)s
)
ON DUPLICATE KEY UPDATE
emailtype = VALUES(emailtype)
"""
connection.execute(sql, {'id': id
, 'emailtype': row['emailtype']
})
else:
df.to_sql('emailinformationforecast', con=engine, if_exists='append', index=False)
print("数据更新成功!")
except Exception as e:
print(f"发生错误: {e}")
finally:
engine.dispose() # 关闭数据库连接
return jsonify(msg)
# 注册接口
@main_bp.route("/pythonizt4az4f/emailinformationforecast/register", methods=['POST'])
def pythonizt4az4f_emailinformationforecast_register():
if request.method == 'POST':#post请求
msg = {'code': normal_code, 'message': 'success', 'data': [{}]}
req_dict = session.get("req_dict")
#创建新用户数据
error = emailinformationforecast.createbyreq(emailinformationforecast, emailinformationforecast, req_dict)
if error!=None and error is Exception:
msg['code'] = crud_error_code
msg['msg'] = "注册用户已存在"
else:
msg['data'] = error
#返回结果
return jsonify(msg)
# 登录接口
@main_bp.route("/pythonizt4az4f/emailinformationforecast/login", methods=['GET','POST'])
def pythonizt4az4f_emailinformationforecast_login():
if request.method == 'GET' or request.method == 'POST':#get、post请求
msg = {"code": normal_code, "msg": "success", "data": {}}
#获取用户名和密码参数
req_dict = session.get("req_dict")
req_model = session.get("req_dict")
try:
del req_model['role']
except:
pass
#根据用户名获取用户数据
datas = emailinformationforecast.getbyparams(emailinformationforecast, emailinformationforecast, req_model)
if not datas:#如果为空则代表账号密码错误或用户不存在
msg['code'] = password_error_code
msg['msg']='密码错误或用户不存在'
return jsonify(msg)
req_dict['id'] = datas[0].get('id')
try:
del req_dict['mima']
except:
pass
#新建用户缓存数据并返回结果
return Auth.authenticate(Auth, emailinformationforecast, req_dict)
# 登出接口
@main_bp.route("/pythonizt4az4f/emailinformationforecast/logout", methods=['POST'])
def pythonizt4az4f_emailinformationforecast_logout():
if request.method == 'POST':#post请求
msg = {
"msg": "退出成功",
"code": 0
}
req_dict = session.get("req_dict")
return jsonify(msg)
# 重置密码接口
@main_bp.route("/pythonizt4az4f/emailinformationforecast/resetPass", methods=['POST'])
def pythonizt4az4f_emailinformationforecast_resetpass():
if request.method == 'POST':#post请求
msg = {"code": normal_code, "msg": "success"}
#获取传递的参数
req_dict = session.get("req_dict")
if req_dict.get('mima') != None:
req_dict['mima'] = '123456'
#更新重置后的密码
error = emailinformationforecast.updatebyparams(emailinformationforecast, emailinformationforecast, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
else:
msg['msg'] = '密码已重置为:123456'
return jsonify(msg)
# 获取会话信息接口
@main_bp.route("/pythonizt4az4f/emailinformationforecast/session", methods=['GET'])
def pythonizt4az4f_emailinformationforecast_session():
if request.method == 'GET':#get请求
msg = {"code": normal_code, "data": {}}
#获取token里的id,查找对应的用户数据返回
req_dict={"id":session.get('params').get("id")}
msg['data'] = emailinformationforecast.getbyparams(emailinformationforecast, emailinformationforecast, req_dict)[0]
return jsonify(msg)
# 分类接口(后端)
@main_bp.route("/pythonizt4az4f/emailinformationforecast/page", methods=['GET'])
def pythonizt4az4f_emailinformationforecast_page():
if request.method == 'GET':#get请求
2.7 测试概述
系统测试就是对项目是否存在错误而运行程序的一种检测方式。系统测试对于一个软件来说极为重要,并且在开发过程中占有很大的比重。每一次功能的实现都伴随着很多次的测试。它是软件是否能用的检测环节,对于软件质量的评估有着重要影响。系统能否被验收成功是测试中最后一个至关重要的环节。
2.8软件测试原则
当进行软件测试时,有一些原则需要遵循,以确保测试的有效性和效率。
第一:测试应该尽早开始。在需求分析和系统设计阶段就应该进行测试准备,以便尽早发现系统的不足之处。这样可以降低修复成本,提高开发效率。测试人员应该在分析需求时就参与进来,确保需求具备可测试性和正确性。
第二:测试应该是全面的。测试应该覆盖软件的各个功能模块和不同的使用场景,以确保软件在各种情况下都能正常运行。测试还应该关注软件的性能、安全性和可用性等方面,以全面评估软件的质量。
随着软件开发的复杂性增加,手动测试已经无法满足需求。自动化测试可以提高测试的效率和准确性,减少人为错误。通过编写自动化测试脚本,可以快速执行大量的测试用例,并及时发现问题。软件的开发是一个迭代的过程,每个迭代都会引入新功能和修复旧问题。因此,测试也应该是一个持续的过程,与开发同步进行。持续集成和持续交付等技术可以帮助实现持续测试,确保软件在每个迭代中都能达到预期的质量标准。通过测试不仅仅是为了发现问题,更重要的是提供有价值的反馈给开发人员。测试人员应该及时向开发人员报告问题,并提供详细的复现步骤和环境信息,以便开发人员能够快速定位和解决问题。
2.9测试用例
(1)用户登陆测试用例
表 6-1 用户登录用例表
项目/软件 | 编制时间 | 20xx/xx/xx | ||||
功能模块名 | 用户登陆模块 | 用例编号 | xxxx | |||
功能特性 | 用户身份验证 | |||||
测试目的 | 验证是否输入合法的信息,允许合法登陆,阻止非法登陆 | |||||
测试数据 | 用户名=1密码=a1身份= 非认证用户 | |||||
操作步骤 | 操作描述 | 数 据 | 期望结果 | 实际结果 | 状态 | |
1 | 输入用户名和密码 | 用户名= 1密码=1 | 显示进入后的页面。 | 同期望结果。 | 正常 | |
2 | 输入用户名和密码 | 用户名= 1密码=aaa | 显示警告信息“不存在该用户名或密码错误!” | 同期望结果。 | 正常 | |
3 | 输入用户名和密码 | 用户名= aaa密码=1 | 显示警告信息“不存在该用户名或密码错误” | 同期望结果。 | 正常 | |
4 | 输入用户名和密码 | 用户名=“” 密码=“” | 显示警告信息“用户名密码不能为空!” | 同期望结果。 | 正常 | |
(2)用户注册测试用例
表 6-2 用户注册用例表
项目/软件 | 编制时间 | 20xx/xx/xx | |||||
功能模块名 | 用户注册模块 | 用例编号 | xxxx | ||||
功能特性 | 用户注册 | ||||||
测试目的 | 验证私注册是否成功,注册数据是否合法 | ||||||
测试数据 | 用户名=aaa 密码=aaa电子邮件=dwa@qq.com | ||||||
操作步骤 | 操作描述 | 数 据 | 期望结果 | 实际结果 | 测试状态 | ||
1 | 输入注册数据 | 用户名= aaa密码=aaa 电子邮件=dwa@qq.com | 提示:注册成功!转入用户主页 | 同期望结果。 | 正常 | ||
2 | 输入注册数据 | 用户名= aaa密码=aaa 电子邮件=dwa@qq.com | 提示:用户名已注册 | 同期望结果。 | 正常 | ||
3 | 输入注册数据 | 用户名= aaa密码=”” 电子邮件=dwa@qq.com | 提示:密码不能为空 | 同期望结果。 | 正常 | ||
4 | 输入注册数据 | 密码=aaa 电子邮件=dwa@qq.com | 提示:用户名为空 | 同期望结果。 | 正常 |



论文部分参考:
为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
我是程序员阿龙,专注于软件开发,拥有丰富的编程能力和实战经验。在过去的几年里,我辅导了上千名学生,帮助他们顺利完成毕业项目,同时我的技术分享也吸引了超过50W+的粉丝。我是CSDN特邀作者、博客专家、新星计划导师,并在Java领域内获得了多项荣誉,如博客之星。我的作品也被掘金、华为云、阿里云、InfoQ等多个平台推荐,成为各大平台的优质作者。
已经为上百名同学获得优秀毕业生!
源码获取
文章下方名片联系我即可~
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏