- 博客(72)
- 收藏
- 关注
原创 对于考研数学的理解
知识模块单变量(上册)多变量(下册)拓展关系极限函数/数列极限(一元)多元函数极限从一维收敛性→多维路径收敛性微分导数与微分(一元)偏导数、全微分、方向导数切线与切平面、梯度替代斜率中值定理Rolle/Lagrange/Cauchy(一元)——多元无直接推广,但Taylor公式保留积分不定积分/定积分(一元)二重、三重积分线→面→体积分的维度升级积分应用面积、弧长、旋转体体积(一元)曲面面积、质心、转动惯量(多元)物理几何应用从一维到多维曲线/曲面——空间曲线方程、曲面方程。
2025-08-02 22:03:10
368
原创 第3章栈、队列、数组和矩阵
接下来我们将从数据的存储结构上来了解栈,栈也采用之前线性表使用的两种存储结构—顺序存储和链式存储。至于索引存储,我只在操作系统和计算机组成原理的存储系统这一章里看到过,而散列存储似乎和查找这一章节有关。这是从数据的逻辑结构上了解栈。接下来从数据的运算角度来看栈—栈的基本操作。(真正有效的文字就应该这样,简短而富含信息,值得学习)一组连续的存储单元在这里就是指。(Bottom)是固定的,不允许进行插入和删除的另外一端。(Top)是栈(线性表)允许进行插入和删除的那一端。🌟栈的定义:栈(Stack)是。
2025-08-02 08:20:53
94
原创 第13讲—多元函数微分学
可见,二元函数的δ邻域在此表示一个圆,比一维的一段区间升维了。是xOy平面上的一个点,δ是某一正数。的距离小于δ的点的集合,称为点。
2025-07-17 13:35:47
190
原创 第10讲——一元函数积分学的几何应用
一共有两种方法,第一种方法是正常思路,但需利用题目中给出的等式条件;用三角形面积近似代替扇形的面积,然后求扇形面积之差就是曲边扇形的面积。还是微元法dA=2π|y|ds,这里的ds是指对应一段曲线的弧长。将圆柱壳沿着任何一条竖线剪开,可展开为一个“长方体”,其体积为。和上面的弧长一样,也是分为平面直角坐标系、参数方程、极坐标系。的任一条垂线与L至多有一个交点,如下图所示,则L绕。用矩形的面积,近似代替曲边梯形的面积。微元法,将其看作是小圆柱体的“积分”。柱壳法,将其看成是圆柱壳的“积分”。
2025-07-12 23:49:17
772
原创 第12讲—一元函数积分学的物理应用
功的微元dW=ρgxA(x)dx为位于x处厚度为dx,水平截面面积为A(x)的一层水被抽出(路程为x)所做的功。物体从a点移动到b点时,变力F(x)所做的功。如右图所示,将容器中的水全部抽出所做的功为。,其中ρ为水的密度,g为重力加速度。其中ρ为水的密度,g为重力加速度。求解方法:找到功的微元→积分。
2025-07-10 21:20:36
331
原创 高数附录(1)—常用平面图形
定义:一个圆沿一直线无滑动地滚动,则圆上一固定点所经过的轨迹称为摆线。这种曲线的产生机制源自于圆在直线上的滚动,这种滚动方式使得圆周上的一个固定点沿着一条特定的轨迹移动,从而形成了摆线。定义:一个动圆外切于一个定圆无滑动地滚动时,动圆圆周上的一点p所描绘的点的轨迹称为外摆线(两圆半径相等时即心形线)。首先这是一个具有周期性的图像,横坐标上一个周期的长度是2πa,对应三角函数的周期2π,所以我们只需要画它的。定义:一个动圆内切于一个定圆作无滑动的滚动,动圆圆周上一个定点的轨迹叫做内摆线。
2025-07-10 12:24:43
512
原创 Latex基本语法(自用)
Ε: \Epsilon(但通常直接用 E)Ο: \Omicron(但通常直接用 O)ρ: \rho, \varrho(变体)Α: \Alpha(但通常直接用 A)Β: \Beta(但通常直接用 B)Κ: \Kappa(但通常直接用 K)Ζ: \Zeta(但通常直接用 Z)Ι: \Iota(但通常直接用 I)Η: \Eta(但通常直接用 H)Ρ: \Rho(但通常直接用 P)Τ: \Tau(但通常直接用 T)Χ: \Chi(但通常直接用 X)Μ: \Mu(但通常直接用 M)Ν: \Nu(但通常直接用 N)
2025-07-07 23:15:29
466
原创 第九讲—一元函数积分学的计算
可以看出,微分/求导后变简单的函数宜取作u,积分后简单些的函数宜取作v。核心思想:将积分表达式中的一部分组合成某个函数的微分形式即d(u(x)),从而将原积分转化为对中间变量u的积分。凑微分法的本质是逆向链式法则,也就是复合函数求导的逆运算,适用于那些一眼就能看出来的积分。①常用的三角函数代换—当被积函数含有如下根式时,可作三角函数代换,这里a大于0。③倒代换:当被积函数分母的幂次比分子高两次及两次以上时,做倒代换,令t=1/x。的乘积在积分时,通过分部积分会循环出现自身形式,形成方程。
2025-07-06 11:11:05
619
原创 2011年英语一
错了两道题目,一道题目是阅读题目对应段落时少翻译了一段重要信息,我选择的干扰选项正好利用了这个漏洞,剩下的两个干扰选项是无中生有,文章中压根没有依据。这题选A,需要重点阅读最后一段,并且读懂全文作者的观点:如果不改变和新听众之间的关系,就难以振兴乐团,也就是质疑吉尔伯特在振兴纽约爱乐乐团中的作用。这篇文章看似简单其实有些难度,这篇文章以热议事件开题,引出作者的看法,指出美国人听古典音乐会的传统习俗已陷入危机——音乐录音对现场演奏产生了冲击。
2025-07-03 21:04:59
270
原创 计算机网络第一章——计算机网络体系结构
本文摘要: 计算机网络基础概念包括网络、互联网和因特网的区别,以及由边缘主机和核心路由器组成的网络结构。三种交换方式各有特点:电路交换建立专用通路但效率低;报文交换存储转发但时延高;分组交换将数据分段传输,提高了效率。计算机网络的八大性能指标涵盖速率、带宽、吞吐量、时延等关键参数。分组交换网时延计算需考虑发送时延、传播时延、路由器数量等因素,公式为:总时延=分组数量×发送时延+传播时延+路由器数量×(发送时延+传播时延)。
2025-07-01 00:03:31
884
原创 第八讲——一元函数积分学的概念与性质
思考:考的知识点学会没→知不知道小技巧→熟练不熟练考点:定积分的精确定义这个题就是考定积分的精准定义,但算起来可能没那么简单,需要用点小技巧,利用奇函数在对称区间上的定积分性质,可以快速得出正确答案。以上题目都是能凑成inni的,用定积分定义求;凑不成的,先用放缩法,放缩后再用定积分定义。比如下面这道题:定积分比较大小M和K容易比较,但是N不太容易直接比较,设函数求单调性,思路是对的,但是不要设错了,不要只会设成比值类型的,那样求导比较麻烦,要设成加减类型的。
2025-06-28 22:48:47
226
原创 C语言函数的参数传递和C++函数的参数传递
因此在数组名或指针作函数参数时所进行的传送只是地址传送,形参在取得该首地址之后,与实参共同拥有一段内存空间,是 C++ 标准库中的一个头文件,它包含了 C 语言标准 I/O 库的 C++ 封装,主要用于文件的输入和输出操作。理解:引用不是新变量,而是已存在变量的别名,引用在编译后直接绑定到目标地址,不产生额外内存分配。,即形参和实参分别占用不同的存储单元,这种传递方式称为“参数的值传递”。,形参和实参占用相同的存储单元,这种传递方式称为“参数的地址传递”。,而形参接收到的是地址,即。
2025-06-24 21:29:12
404
原创 数据结构——第二章 线性表之顺序表、单链表
每个元素只包含一个指针所以叫做单链表。LNode *想强调返回的是一个结点,而LinkList L想强调的是这个单链表。
2025-06-13 23:19:54
900
原创 第二章——线性表之循环链表、静态链表
循环链表和静态链表是线性表的重要存储结构。循环单链表通过尾结点指向头结点形成闭环,判空条件为头结点指针是否等于头指针;循环双链表则需头尾结点互指,判空条件为头结点的前后指针均指向头指针。静态链表使用数组实现链式结构,通过游标代替指针,适合不支持指针的语言。相比顺序表,链表在插入删除时更高效,但查找需顺序访问;顺序表支持随机存取但扩容不便。两者各有优劣,需根据具体场景选择合适结构。(150字)
2025-06-11 22:02:52
909
原创 第六讲——一元函数微分学的应用之中值定理、微分等式与微分不等式
如果题目中欲证的不等式中都是常数,则可以将其中一个或者几个常数变量化,再利用导数的性质去证明。达布定理(Darboux’s Theorem)是微积分中的重要定理,它指出:若函数。本章内容是考试的重中之重,分值最高占17分,而且多是难题——证明题。的零点,从几何上来讲也是讨论曲线之间的交点。闭区间上连续函数必有界且能取到最大值最小值。显然介值定理可以看作是有界与最值定理的变体。主要使用拉格朗日中值定理或者泰勒公式。零点定理可以看作是介值定理的特例。的连续性及推广的零点定理可知,存在。
2025-06-11 19:34:43
835
原创 简单了解一下Hugging Face(抱抱脸)
Hugging Face 的 Spaces 专栏 是一个零门槛的机器学习应用托管平台,允许用户快速构建、部署和分享基于 AI 的交互式应用。它解决了开发者“模型训练后无法直观展示效果”的核心痛点,被社区称为 “AI 模型的 Demo 游乐场”。Hugging Face 是一个开源的机器学习平台和社区,成立于2016年,总部位于美国纽约,被广泛称为“机器学习的GitHub”。可以看到这里面有各种各样的开源大模型,文本生成模型,语音合成模型,图像生成模型。首先需要通过邮件注册,成功后可以看到。
2025-06-06 21:18:08
588
原创 第五讲——一元函数微分学的几何应用
从定义上可以看出,极大值点/极小值点指的都是横坐标,横坐标对应的值才是极值。极值是一个局部概念,仅需在附近比较函数值大小,不涉及区间整体性质。这里定义中的的邻域就是在x0x_0x0附近的意思。与函数在全局的最大/最小值有本质区别。同时因为是在某一点的邻域附近所以要求其双侧邻域存在定义,而区间端点处因缺少单侧邻域而不讨论极值。间断点同样要求双侧邻域有定义,端点处也不讨论间断点。间端点可以是极值点,可以取一些特殊情况验证。
2025-06-06 18:51:14
964
原创 数据结构第一章
本文总结了数据结构考试的核心要点,主要包括概念、理解和运用三方面。重点分析了时间复杂度计算中的常见题型,包括循环和递归两种情况,并通过典型例题进行说明。文章还对比了斐波那契数列的递归和非递归算法,从时间复杂度(O(2^n) vs O(n))和空间复杂度(O(n) vs O(1))角度进行比较,展示了算法优化的思路。这些内容涵盖了数据结构考试的主要知识点,有助于系统性地理解和掌握相关概念。
2025-06-04 20:50:35
855
1
原创 本科毕业论文总结
本科毕业论文重要性不可忽视,关乎毕业证获取。建议大四上学期末开始准备,每天专注4小时,3个月可完成。论文分为论文类和设计类,导师指导程度差异较大。内容包括摘要、绪论、正文等,字数1.5万左右。推荐使用Word、Visio等工具,注意格式规范。答辩重点在论文内容,老师主要看论文质量而非PPT。需提前准备开题报告等材料。查重推荐论无忧网站,格式检测准确。
2025-06-02 21:09:58
1006
原创 第四讲、第五讲——一元函数微分学的计算和一元函数微分学的几何应用
两种做题方法,一种是莱布尼茨公式,另一种是泰勒公式。考点为:绝对值求导,转换为根号形式,忘记了。考点:参数方程显化,先讨论然后化简。考点是:求函数的高阶导。
2025-05-03 21:44:42
119
原创 微分与积分(前言)
设fxf(x)fx在x0x_0x0的某个邻域有意义,当xxx的增量为ΔxΔxΔx时,yyy的增量ΔyΔyΔy为fx0Δx−fx0fx0Δx−fx0。当Δx→0Δx \to 0Δx→0时,ΔyΔxΔxΔy的极限存在,则称函数f(x)在x0x_0x0处可导。此极限值为函数f(x)在点x0x_0x0处的导数,记作f′x0f'(x_0)f′x0。f。
2025-04-28 20:18:09
1075
原创 高数第二讲——数列极限
本文主要讲了第二章数列极限的定义,性质以及求解方法。重点是理解海涅定理,压缩映射原理和单调有界准则。整体难度不大,但是与其他知识点比如无穷级数综合考察时难度会变大。
2025-04-16 18:12:36
1104
原创 使用python求函数极限
symbols() 函数和 Symbol() 函数在 SymPy 中都用于定义符号变量,symbols() 可以同时创建多个符号变量,而 Symbol() 只能创建单个符号变量。是在导入matplotlib库中的pyplot模块并将其重命名为plt。可以总结为:from library import function。在 Python 中使用 SymPy 库时,是用来导入 SymPy 中的。
2025-04-15 20:01:23
354
原创 英语语法和长难句分析
其实这也是常见的句型:It is + adj + for sb to do sth.(1) “It is + 形容词 + of sb to do sth”for sb:形容词描述动作的性质(如“做某事很难”)。of sb:形容词描述人的品质(如“某人很善良”)。
2025-04-10 14:46:40
416
原创 在Word中使用MathType7
找到mathtype安装路径下的Office Support文件夹,根据word位数选择32或者64,将其中的Mathtype Commands.dotm(版本根据自己word选择)文件复制到。找到mathtype安装路径下的Mathpage文件夹,根据word位数选择32或者64,将其中的Mathpage.wll文件复制到。打开word,若mathtype选项栏存在且不是灰色,那么mathtype内嵌到word就已经成功了。:打开word出现53错误,或mathtype栏是灰色的。
2025-04-07 08:55:05
456
脑电情绪识别是通过分析脑电图(EEG)信号来解析人类情绪状态的前沿交叉学科 该技术利用头皮电极捕捉大脑神经元群的电生理活动,结合机器学习和深度学习算法,将特定的脑电波模式(如α波、β波、θ波的功率谱变
2025-06-05
基于脑电的情绪识别技术综述:从信号处理到应用前景
2025-04-14
conda.exe 是 Conda 包管理系统 在 Windows 平台上的核心可执行文件,它是 Anaconda/Miniconda 发行版的核心组件
2025-06-04
cudnn8.97的版本,适用于cuda11.x的版本
2024-07-05
深度学习中的.pth文件有什么作用?
2025-03-08
相联存储器可以按地址寻址吗?
2025-02-20
计算机组成原理第一章问题小结
2025-02-15
关于Java中的增强for循环
2025-01-26
在Java文件中一个源文件可以包含多个类吗?
2025-01-24
关于java中的继承
2025-01-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人