学习大语言模型(Large Language Model, LLM)需要结合理论知识和实践操作。以下是系统化的学习路径和建议,适合不同基础的学习者:
一、基础准备
1、 数学与算法基础
-
数学:掌握线性代数(矩阵运算)、概率统计(贝叶斯、分布)、微积分(梯度相关)。
-
机器学习:理解监督学习、无监督学习、损失函数、优化算法(如梯度下降)。
-
深度学习:学习神经网络(CNN/RNN)、反向传播、正则化技术(如Dropout)。
2、 编程技能
-
Python:熟练使用Python及科学计算库(NumPy、Pandas)。
-
深度学习框架:掌握PyTorch或TensorFlow,熟悉张量操作和模型训练流程。
-
工具链:学习Hugging Face Transformers库、LangChain等LLM生态工具。
二、核心理论与技术
1、 自然语言处理(NLP)基础
-
书籍:《Speech and Language Processing》(Jurafsky)
-
课程:斯坦福CS224N(NLP with Deep Learning)
-
文本表示:词袋模型、Word2Vec、GloVe、BERT嵌入。
-
经典任务:文本分类、命名实体识别(NER)、机器翻译。
2、Transformer架构
-
《Attention Is All You Need》(Transformer原论文)
-
《BERT: Pre-training of Deep Bidirectional Transformers》
-
核心组件:自注意力机制(Self-Attention)、位置编码、多头注意力。
-
模型变体:BERT(双向编码)、GPT(自回归生成)、T5(文本到文本统一框架)。
3、 LLM进阶技术
-
预训练与微调:Masked Language Modeling(MLM)、Next Sentence Prediction(NSP)。
-
高效训练技术:模型并行、混合精度训练、LoRA(低秩适应)。
-
推理优化:量化、模型蒸馏、KV缓存。
三、动手实践
1、 入门项目
-
参考Hugging Face教程。
-
使用Hugging Face快速调用API:
from transformers import pipeline
generator = pipeline("text-generation", model="gpt2")
print(generator("Hello, I'm learning LLM because", max_length=50))
- 微调预训练模型(如用BERT做文本分类)
2、 中级项目
-
复现经典论文(如从头实现Transformer)。
-
参与Kaggle竞赛(如NLP竞赛:文本生成、摘要生成)。
-
构建应用:基于LLM的聊天机器人、文档问答系统。
3、高级探索
-
预训练小型LLM(使用开源代码库如Megatron-LM、DeepSpeed)。
-
研究RLHF(基于人类反馈的强化学习):OpenAI的InstructGPT/ChatGPT核心方法。
-
探索多模态LLM(如CLIP、GPT-4V)。
四、持续学习与资源
1、 学术跟踪
-
顶会论文:NeurIPS、ICLR、ACL、EMNLP。
-
论文库:ArXiv、Papers With Code。
2、 行业动态
-
关注OpenAI、Google AI、Meta AI等机构的博客和技术报告。
-
开源项目:Llama 2、Falcon、Mistral等模型的代码和文档。
3、 社区与交流
-
论坛:Reddit的r/MachineLearning、Hugging Face论坛。
-
中文社区:知乎、掘金、AI相关公众号(如「李rumor」「机器之心」)。
五、学习路线图(按时间规划)
-
0-1个月:掌握Python/PyTorch,完成NLP基础课程。
-
1-3个月:深入Transformer,复现BERT/GPT的微调任务。
-
3-6个月:参与Kaggle竞赛或开源项目,学习分布式训练技术。
-
6个月以上:研究LLM前沿技术(如MoE、长上下文优化),尝试预训练模型。
六、避坑建议
-
避免盲目调参:先理解模型原理,再优化代码。
-
重视数据质量:数据清洗和预处理常比模型结构更重要。
-
从简到难:不要直接挑战千亿参数模型,从BERT/GPT-2等小模型入手。
通过以上步骤,你可以逐步掌握LLM的核心技术,最终具备独立开发或研究的能力。保持好奇心,多动手实践是关键!
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。