李升伟 编译
#编程 #新手入门 #人工智能 #氛围编程
不久前我偶然看到"氛围编程"(vibe coding)这个词时,简直被震住了——原来过去两年我构建应用的方式(最少手写代码+最大程度用神经网络自动化)现在有了个时髦名字。本文我将分享与AI结对编程的工具包,以及对这个趋势的思考。
什么是氛围编程?
当有些人还在目瞪口呆围观,有些人谨慎试水,另一些人激烈抨击时,我的反应是:“认真的吗?”。从第一次见识现代神经网络起,我就开始用它干正事了(而不是生产网络段子)。现在特斯拉的大佬居然给这起了个"氛围编程"的学名。
两年前,我和所有人一样受够了重复劳动:写项目模板、跨文件搬运代码片段、每周重复搜索相同问题。2022年8月GitHub Copilot开放公测时,虽然有人惊呼"未来已来",但我试用后只觉得:“就这?高级自动补全而已”。当时的它连"写个函数"这种基础任务都够呛,至今VS Code里的Copilot仍是我用过最差的AI编程工具。
他们开始察觉异常了
转机出现在2022年11月ChatGPT 3.5发布时。这不再是简单的代码生成器,而是个真正能对话的计算机。当时我写下这样的笔记:
对我而言,ChatGPT通过了反向图灵测试
传统图灵测试要求机器伪装人类,而ChatGPT的回答结构让你感觉就是在和智慧体对话——即便你清楚它只是神经网络
我疯狂消耗请求限额,用它补全大学翘课漏掉的计算机知识。作为不敢在Stack Overflow提问的社恐,终于找到了完美学习方式——就像有个不厌其烦讲解的教授。虽然当时它写的代码很烂,但我坚持尝试。
后来我受够了手动复制文件内容提供上下文,于是用ChatGPT自己开发了个控制台工具snap2txt,能把整个项目打包成单个文本文件。扔进聊天窗——砰!AI瞬间理解项目结构。这是第一步进化。
随着ChatGPT 4发布,我发现:配合正确工具链,AI编程能真正流畅起来。Python生态+Django框架+Tailwind替代BEM的UI方案,完美契合这种工作流。我的原则很简单:最少手工劳动,最大程度"嘿AI,给我造个机器人"。
第一个全AI项目是WebInsights——基于OpenAI API的JS代码/robots.txt/站点地图分析工具。虽然作为SaaS登陆ProductHunt后因流量惨淡关闭,但这段经历无比珍贵。后来我转型自由职业,专注用Django开发解析器和机器人,直接Docker容器化部署。这两年我可能只亲手写了10%的代码,其余都交给AI。
我的核心工具链:Prototype与snap2txt
这两件法宝已成为我每个项目的标配:
1. Prototype:无痛启动器
我的Django+Docker快速启动套件。选择Docker而非venv的原因很简单:环境隔离保证开发机与服务器(无论是Railway.app还是DigitalOcean)行为一致。包含预置Dockerfile、基础docker-compose配置、OpenAI API助手,以及一键启动的shell脚本。克隆仓库→命名项目→执行./setup.sh,几秒后本地就运行着Django容器。
2. snap2txt:即时上下文生成器
一年半前开发的工具,几乎每天使用。原理简单:扫描项目文件,跳过node_modules和.git等垃圾目录(支持类似.gitignore的忽略列表),合并关键代码为单一文本文件。也可以白名单模式只包含指定文件。
工作流示例
假设有个Django项目:
运行snap2txt --il生成project_contents.txt
将其扔进Cursor Composer或任意AI聊天窗
神经网络瞬间理解整个项目结构
写提示词→发一两个请求→完工
没有它,我可能还在像原始人一样手工复制代码块。
效率革命
这套组合拳能节省大量时间:Prototype解决环境配置,snap2txt消灭上下文传递。配合Cursor(我最爱的IDE,连创建文件都能省)或Claude/DeepSeek/ChatGPT等模型,原本需要1-2周的原型,现在1小时就能搞定。比如:
三分钟搭建Telegram机器人
快速开发数据解析器
自托管Markdown版Telegra.ph
三分钟搭建的机器人
未来展望:当AI成为主力程序员
这两年我一直在思考:终点在哪里?两年前无法想象90%代码不用亲自写,如今已成常态。如果扎克伯格所言不虚(“到2025年Facebook中级代码将来自AI助手”),这仅仅是个开始。
AI代码=新型屎山?
严肃派已经抱怨"氛围编程不过是技术债务的华丽包装",他们不全错。AI代码常有"能跑就行"的气质,你可能盯着生成结果想:"XSS漏洞藏哪儿了?"或是本地运行正常却在服务器崩溃(因为AI忘了Debug=True)。放任不管就是定时炸弹。
但我认为这是过渡期现象。系统正在变聪明,或许几年后我们根本不需要关注实现细节:AI负责编写-测试-部署,自动监控系统把关,程序员转型为操作员——坐着看屏幕,偶尔拍拍AI脑袋,出事时按下紧急按钮。
什么技能会保留?
如果不用写代码,那我们做什么?我认为未来属于会提问的人。不是"怎么写这个函数",而是"到底要构建什么"。设计能力、架构思维、任务拆解和向AI解释需求的能力将成为核心,外加辨别代码好坏的基本功。氛围编程不是抛弃编程,而是从体力劳动转向脑力创造。
关于"需求"的冷知识:尽管程序员数量激增,软件需求反而膨胀了。当普通开发者+AI产能提升10倍时会发生什么?我们会需要更多软件。虽然不确定,但这就是我感知到的"氛围"。
好还是坏?
老实说——不知道。但对我个人,这两年AI的助力堪称知识注射器。相比前八年的缓慢成长,这段时期的进步堪称飞跃。不用泡论坛、不用在问答网站尬问,只需和神经网络聊天。对社恐而言简直完美。
对整个行业?我们可能正迈向程序员不写代码、只负责"氛围营造"的时代。而且这未来一点也不远——它已经来了。
原文链接:https://dev.to/vorniches/vibe-coding-yeah-ive-been-doing-it-for-two-years-ea2