【蓝桥杯】空间

问题描述

小蓝准备用 256MB 的内存空间开一个数组,数组的每个元素都是 3232 位 二进制整数,如果不考虑程序占用的空间和维护内存需要的辅助空间,请问 256MB 的空间可以存储多少个 3232 位二进制整数?

求解

256MB 内存空间相当于 256 × 1024 × 1024B = 268435456B 的内存空间。

而每个元素是 32 位,即 4 字节,所以一个数组元素占用的空间为 4B。

因此,可以存储的元素个数就是内存空间大小除以一个元素的空间大小,即:

268435456B ÷ 4B = 67108864

故,可以存储 67108864 个 32 位二进制整数。

AC码

#include <iostream>
using namespace std;
int main()
{
  unsigned long long int B=256*1024*1024,ans=B/4;//1MB=1024KB,1KB=1024B,1字节=1B
  cout<<ans<<endl;
  return 0;
}

### 蓝桥杯竞赛中的“空间”相关试题及其解题思路 #### 题目背景 蓝桥杯竞赛中,“空间”通常指代内存分配、存储结构或者数据的空间复杂度等问题。这类题目可能涉及数组、链表、树等数据结构的操作,以及如何优化算法以减少空间占用。 --- #### 可能的“空间”相关试题分析 ##### 1. **动态规划与空间优化** 在某些动态规划问题中,状态转移方程可能会涉及到较的二维数组或三维数组来保存中间结果。然而,在实际实现过程中可以通过滚动数组的方式降低空间复杂度[^2]。 例如: 如果一个问题的状态定义为 `dp[i][j]` 表示前 i 个物品放入容量 j 的背包的最价值,则可以将其优化为一维数组 `dp[j]` 来表示当前状态下不同容量下的最优解。 ```python def knapsack(values, weights, capacity): n = len(values) dp = [0] * (capacity + 1) for i in range(n): for w in range(capacity, weights[i]-1, -1): # 倒序更新防止重复计算 dp[w] = max(dp[w], dp[w - weights[i]] + values[i]) return dp[capacity] ``` 上述代码通过倒序遍历实现了仅使用 O(W) 空间的解决方案,而不是传统的 O(N*W)。 --- ##### 2. **杨辉三角形的空间利用** 另一个常见的问题是关于杨辉三角形的构建。虽然可以直接创建一个完整的二维列表来存储整个杨辉三角形,但这会浪费量不必要的空间。因此更优的方法是逐层生成并只保留上一层的结果用于下一次迭代[^3]。 以下是基于此思想的一个 Python 实现: ```python def generate_pascals_triangle(num_rows): result = [] for row_number in range(1, num_rows + 1): current_row = [1] * row_number if row_number >= 3: previous_row = result[-1] for idx in range(1, row_number - 1): current_row[idx] = previous_row[idx - 1] + previous_row[idx] result.append(current_row) return result ``` 这里我们每次只需维护最新的一行即可完成任务,从而减少了额外销。 --- ##### 3. **图论中的邻接矩阵 vs 邻接表** 当处理规模稀疏图时,采用邻接矩阵形式显然会造成极的资源消耗;相比之下,邻接表则更加节省空间。对于每条边 e=(u,v),只需要记录 u 和 v 即可形成连接关系而无需填充零值单元格。 下面展示了一个简单的无向图转邻接表的例子: ```python from collections import defaultdict def build_adjacency_list(edges): adj_list = defaultdict(list) for u, v in edges: adj_list[u].append(v) adj_list[v].append(u) return dict(adj_list) ``` 这种方法显著降低了所需储存量特别是针对那些顶点但连通少的情况非常有效[^1]。 --- #### 总结 综上所述,在面对蓝桥杯比赛中有关于“空间”的挑战时,可以从以下几个方面入手考虑解决办法:一是运用适当的数据结构转换策略比如从完全展到局部保持;二是探索是否存在进一步压缩可能性如滚动数组技巧的应用;三是根据不同场景灵活选用更适合特定条件的表现手法诸如改用邻接表代替传统意义上的密集型表达方式等等^[]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会C++的Mr.Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值