sybh的博客

本公司以申请 Ultralytics YOLO 模型商用版权。如需修改或训练 Ultralytics YOLO 模型,且无法开源,请联系 Ultralytics 获取授权。(Ultralytics 商用授权链接可私信获取)

  • 博客(3574)
  • 资源 (10)
  • 收藏
  • 关注

原创 YOLO项目环境配置教程

YOLO项目环境安装,环境配置,项目环境配置,python虚拟环境搭建

2024-10-16 22:49:28 4274

原创 基于深度学习YOLOv12的火焰烟雾检测系统(YOLOv12+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

摘要:本项目基于YOLOv12算法开发了一套高效的火焰烟雾检测系统,支持图片、视频和实时摄像头三种检测模式。系统采用多线程架构和科幻风格UI设计,具备双画面对比显示、检测结果可视化表格、智能参数调节等功能。核心数据集包含6744张标注图像,训练后模型可精准识别火焰和烟雾。系统适用于森林防火、工业安全、城市安防等多种场景,具有响应速度快(约30fps)、检测精度高等特点。项目提供完整源码、训练数据和部署教程,可实现端到端的火焰烟雾检测解决方案。

2025-06-11 19:12:29 859

原创 基于深度学习YOLOv11的火焰烟雾检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

【摘要】本项目基于YOLOv11算法开发了一套智能火焰烟雾检测系统,实现了火灾早期预警功能。系统具备图片、视频和实时摄像头三种检测模式,通过深度学习技术快速识别火焰和烟雾目标。核心功能包括用户登录验证、多线程检测处理、双画面可视化显示(原始画面/检测结果)、参数配置(置信度/IoU阈值调节)以及结果保存机制。系统采用6744张标注图像训练,支持fire和smoke两类目标检测,检测精度达90%以上。Python实现结合PyQt5界面,具有科幻风格UI设计和响应式布局,适用于森林防火、工业监控等场景。

2025-06-11 16:10:50 937

原创 基于深度学习YOLOv8的船舶分类识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8深度学习框架,开发了一套先进的船舶分类识别检测系统,能够自动识别并分类五种主要船舶类型:集装箱船(Container Ship)、邮轮(Cruise Ship)、军用舰艇(Military Ship)、滚装船(RORO)和油轮(Tanker)。系统采用包含3,721张高质量标注图像的数据集(训练集3,232张、验证集339张、测试集150张),通过精细的模型调优和迁移学习技术,实现了高精度的船舶检测与分类。

2025-05-26 14:52:04 985

原创 基于深度学习YOLOv8的道路坑洼识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法,开发了一套专门用于道路坑洼识别的智能检测系统。该系统能够通过实时图像或视频流自动检测并定位道路表面的坑洼、裂缝等缺陷,为道路维护、交通安全和智慧城市建设提供数据支持。项目采用了一个包含3,490张标注图像的专业数据集(训练集3,043张、验证集273张、测试集174张),通过深度学习技术训练出高精度的坑洼检测模型,具备较强的泛化能力和鲁棒性。

2025-05-26 14:45:37 963

原创 基于深度学习YOLOv8的汽车损坏识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于汽车损坏识别的智能检测系统。系统通过对汽车外观图像的实时分析,能够准确识别和定位车辆表面的各种损伤,包括划痕、凹陷、剐蹭等常见损坏类型。项目使用了一个包含11,675张标注图像的专业数据集(训练集10,218张、验证集971张、测试集486张),通过深度学习技术训练出高性能的汽车损坏检测模型。该系统实现了端到端的汽车损坏检测流程,从图像输入到损坏区域识别与标注完全自动化,检测精度达到工业应用水平。

2025-05-26 14:24:00 987

原创 基于深度学习YOLOv8的蜜蜂识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8深度学习框架,开发了一套高精度的蜜蜂识别检测系统,专门用于蜂群监测、生态研究和农业授粉管理。系统以"bees"为检测目标,通过计算机视觉技术实现对蜜蜂个体的精准识别与定位,可有效统计蜂群数量、分析活动轨迹及监测异常行为。数据集包含训练集5640张图像、验证集1604张图像和测试集836张图像,覆盖不同光照条件、背景环境及蜜蜂飞行姿态,确保模型具备强泛化能力。

2025-05-26 14:17:03 717

原创 基于深度学习YOLOv8的猫狗品种识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8深度学习框架,开发了一套高精度的猫狗品种识别检测系统,能够准确识别和分类37种不同品种的猫狗(包含12种猫品种和25种狗品种)。系统采用大规模标注数据集进行训练,包含训练集12879张图像、验证集736张图像和测试集368张图像,通过数据增强、迁移学习和模型优化技术,实现了对各类猫狗品种的高精度识别。该系统具备实时检测能力,可广泛应用于宠物医院、智能家居、宠物社交平台、动物收容所等多个场景。

2025-05-26 14:09:55 1000

原创 基于深度学习YOLOv8的危险武器识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法,开发了一套危险武器(刀具)智能识别系统,专门用于实时检测监控场景中的刀具,以提升公共安全防范能力。系统以"Knife"作为唯一检测类别,通过深度学习模型对图像或视频流进行分析,能够快速、准确地识别并定位刀具,适用于安检、公共场所监控、校园安全等场景。数据集包含训练集6675张图像和验证集2514张图像,经过数据增强、模型调优和迁移学习,系统在复杂环境下仍能保持较高的检测精度和鲁棒性。

2025-05-26 14:02:33 1263

原创 基于深度学习YOLOv8的超市空货架识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套超市空货架智能识别系统,专门用于检测超市货架上的缺货状态(Out-of-Stock,简称OOS)。系统以"100-O-O-S"作为唯一检测类别,通过对货架图像的实时分析,能够准确识别并定位缺货区域。项目数据集经过数据增强和模型优化,实现了较高的检测精度。该系统可集成到超市现有的监控体系中,为库存管理和补货决策提供实时数据支持,有效提升零售运营效率。

2025-05-26 13:55:14 1001

原创 基于深度学习YOLOv8的药物识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目开发了一个基于YOLOv8深度学习算法的药物识别与检测系统,旨在通过计算机视觉技术实现对8种不同药物的自动识别与分类。系统针对的药物类别包括:Cipro 500、Ibuphil 600 mg、Ibuphil Cold 400-60、Xyzall 5mg以及四种颜色标识药物(蓝色、粉色、红色和白色)。通过YOLOv8这一先进的实时目标检测算法,系统能够快速准确地识别药物种类,为医疗健康领域提供了一种高效可靠的药物识别解决方案。

2025-05-26 13:49:32 1106

原创 基于深度学习YOLOv8的车辆识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一个高效准确的车辆识别检测系统,专门用于道路交通场景中多类车辆识别。系统针对四类常见车辆(公交车、小汽车、摩托车和卡车)进行优化检测,使用包含1000张图像的数据集(训练集750张、验证集100张、测试集150张)进行模型训练和评估。该系统实现了实时视频流和静态图像中的车辆检测与分类,具有检测速度快、识别准确率高和轻量化等特点。系统可部署于多种硬件平台,包括服务器、边缘计算设备和移动终端,为智能交通管理、自动驾驶辅助系统和道路安全监控提供了可靠的技术解决方案。

2025-05-26 13:43:45 933

原创 基于深度学习YOLOv8的家具识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于家具识别的智能视觉系统。系统针对三类常见家具(椅子、沙发和桌子)进行高效识别与定位,共使用了689张标注图像作为数据集。通过深度学习技术,该系统能够实时准确地检测图像或视频流中的家具物品,并标注其类别和位置信息。项目实现了从数据采集、标注、模型训练到性能评估的完整流程,最终在测试集上达到了较高的识别精度,为智能家居、室内导航、家具电商等应用场景提供了可靠的技术解决方案。

2025-05-26 13:36:08 797

原创 基于深度学习YOLOv8的手语识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法开发了一套高效的手语识别系统,专门用于识别美国手语字母表(A-Z)中的26个字母手势。系统采用深度学习技术,通过504张训练图像、144张验证图像和72张测试图像构建的数据集进行模型训练与优化。该系统能够实时检测和分类手语手势,将视觉手势转化为对应的字母输出,为手语使用者与非手语使用者之间搭建沟通桥梁。实验结果表明,该系统在测试集上达到了较高的识别准确率,展现了YOLOv8算法在手语识别领域的强大应用潜力。

2025-05-26 13:30:29 990

原创 基于深度学习YOLOv10的船舶分类识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于最先进的YOLOv10目标检测算法,开发了一套高精度的船舶分类识别检测系统,能够准确识别并分类五大类船舶:集装箱船(Container Ship)、邮轮(Cruise Ship)、军用舰艇(Military Ship)、滚装船(RORO)和油轮(Tanker)。系统采用包含3,721张高质量船舶图像的专业数据集进行训练和评估,其中训练集3,232张,验证集339张,测试集150张。该系统在海面复杂背景下实现了多类别船舶的实时检测与分类,能够有效应对不同天气条件、拍摄角度和船舶姿态的识别挑战。

2025-05-25 19:02:16 751

原创 基于深度学习YOLOv10的道路坑洼识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10深度学习框架开发了一套高精度的道路坑洼识别检测系统,专门用于自动检测道路表面的各类坑洼损伤。系统采用包含3,490张道路坑洼图像的专业数据集进行训练和评估,其中训练集3,043张,验证集273张,测试集174张。该系统在复杂道路环境下实现了对坑洼目标的精准识别,能够有效应对不同光照条件、路面材质和天气状况的挑战。本系统可广泛应用于市政道路维护、自动驾驶环境感知、车队管理系统和智慧城市建设等多个领域,为道路安全维护提供智能化解决方案。

2025-05-25 18:53:49 828

原创 基于深度学习YOLOv10的汽车损坏识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv10目标检测算法,开发了一套高精度的汽车损坏识别检测系统,专门用于快速准确地识别车辆各类损伤情况。系统采用包含11,675张高质量汽车损伤图像的专业数据集进行训练和评估,其中训练集10,218张,验证集971张,测试集486张。该检测系统实现了对汽车刮擦、凹陷、裂纹、破碎等多种损伤类型的精准识别,可广泛应用于保险理赔、二手车评估、汽车维修厂质检、共享汽车运营管理以及自动驾驶安全监测等多个领域,为汽车后市场服务提供智能化技术解决方案。

2025-05-25 18:43:29 915

原创 基于深度学习YOLOv10的蜜蜂识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于新一代YOLOv10目标检测框架,开发了一套高精度的蜜蜂识别检测系统,专门用于在各种复杂自然场景中准确识别蜜蜂个体。系统采用包含8,080张高质量蜜蜂图像的专业数据集进行训练和评估,其中训练集5,640张,验证集1,604张,测试集836张。该检测系统实现了在密集蜂群场景下对单个蜜蜂的精准识别,能够有效应对蜜蜂快速移动、相互遮挡以及复杂背景等挑战。系统可广泛应用于智慧农业、生态监测、生物研究以及蜂业自动化管理等多个领域,为蜜蜂种群监测和蜂业智能化发展提供可靠的技术支持。

2025-05-25 18:34:58 997

原创 基于深度学习YOLOv10的猫狗品种识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv10目标检测算法,开发了一套高精度的猫狗品种识别检测系统,能够区分37种不同的猫犬品种(包括12种猫品种和25种犬品种)。系统采用包含13,983张图像的专业数据集进行训练和验证,其中训练集12,879张,验证集736张,测试集368张。该识别系统能够在复杂场景下准确识别并分类不同品种的猫狗,可广泛应用于宠物医院智能诊断、宠物商店管理、动物收容所自动化登记、宠物社交平台内容分类以及智能家居宠物识别等多个领域,为宠物相关行业提供智能化解决方案。

2025-05-25 18:26:08 866

原创 基于深度学习YOLOv10的危险武器识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高效的危险武器识别检测系统,专门用于识别刀具等危险物品。系统使用包含9199张图像的自定义数据集进行训练和验证,其中训练集6675张,验证集2514张。该系统能够在实时视频流或静态图像中准确检测出刀具等危险武器,可应用于公共场所安检、智能监控、校园安全等多个场景,为安全防护提供智能化解决方案。相比前代YOLO算法,YOLOv10在保持高精度的同时显著提升了检测速度,使其更适合部署在资源有限的边缘设备上。

2025-05-25 18:16:17 1254

原创 基于深度学习YOLOv10的超市空货架识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测框架,开发了一套专门针对零售行业的智能空货架识别系统,能够准确检测超市货架上的缺货状态(标注为"100- O-O-S")。系统使用货架图像的专业数据集进行训练和评估,通过针对零售场景的特殊优化,本系统实现了对超市货架缺货状态的高精度实时检测,为零售商的库存管理、补货优化和销售分析提供了智能化解决方案。系统在复杂超市环境下仍能保持稳定的检测性能,可适应不同货架类型、商品品类和店面照明条件,显著提升了传统人工巡检的效率与准确性。

2025-05-25 13:46:09 1150

原创 基于深度学习YOLOv10的药物识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv10目标检测算法,开发了一套高精度的药物识别检测系统,专门用于药品识别与分类。系统能够准确识别8种特定药物(包括5种特定药品和3种颜色分类):Cipro 500、Ibuphil 600 mg、Ibuphil Cold 400-60、Xyzall 5mg以及蓝色(blue)、粉色(pink)、红色(red)、白色(white)药片。通过针对药物特征的网络优化和训练策略调整,本系统实现了对药品外观的高精度识别,为医药管理、智能药房、患者用药安全等场景提供了创新的技术解决方案。

2025-05-25 13:37:07 975

原创 基于深度学习YOLOv10的车辆识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高效的车辆识别检测系统,专门用于识别和分类四种常见车辆类型:公共汽车(bus)、小汽车(car)、摩托车(motorbike)和卡车(truck)。系统使用包含1000张图像的自定义数据集进行训练和评估,其中训练集750张、验证集100张、测试集150张。通过优化YOLOv10的网络结构和训练策略,本项目实现了在复杂交通场景下对多类车辆的高精度实时检测,为智能交通管理、自动驾驶辅助系统等应用提供了可靠的技术支持。

2025-05-25 13:26:02 826

原创 基于深度学习YOLOv10的家具识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套专门用于家具识别的智能视觉系统,能够准确识别和定位三种常见家具类别:椅子(Chair)、沙发(Sofa)和桌子(Table)。系统使用包含689张图像的自建数据集进行训练和评估,通过优化网络结构和训练策略,该系统在保持实时检测速度的同时,实现了较高的检测精度,可应用于智能家居、室内导航、家具电商等多个领域。项目不仅验证了YOLOv10算法在小规模专用数据集上的有效性,也为家具识别领域提供了一个可扩展的技术框架。

2025-05-25 13:14:45 944

原创 基于深度学习YOLOv10的手语识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高效的手语字母识别系统,专门用于识别美国手语字母表中的26个字母(A-Z)。系统通过深度学习技术实现了对手势的实时检测与分类,为手语识别和人机交互领域提供了创新的解决方案。项目使用自定义数据集进行训练,包含720张标注图像(训练集504张,验证集144张,测试集72张),最终模型在测试集上达到了较高的识别准确率。该系统的开发不仅有助于打破听力障碍人士与健听人士之间的沟通壁垒,也为智能人机交互、无障碍技术开发等领域提供了技术参考。

2025-05-25 13:04:33 859

原创 基于深度学习YOLOv8的寄生虫分类识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv8深度学习框架,开发了一套高精度的寄生虫分类识别检测系统,能够准确识别和分类8种常见人体寄生虫。系统在包含1,484张训练图像、411张验证图像和215张测试图像的医学显微图像数据集上进行训练和优化,实现了显微镜视野下寄生虫的高精度检测与分类。该检测系统具备实时分析、自动分类和定量统计等功能,可广泛应用于临床检验、疾病诊断、流行病学调查和公共卫生监测等领域。系统支持多种部署方式,包括医院检验科显微镜工作站、移动医疗检测设备和远程医疗诊断平台等,为寄生虫病防治提供智能化技术手段。

2025-05-24 09:19:12 824

原创 基于深度学习YOLOv8的水下生物识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv8深度学习框架,研发了一套专用于水下生态环境的生物识别检测系统,能够准确识别和分类五种典型的水下生物及植物:海胆(echinus)、海参(holothurian)、扇贝(scallop)、海星(starfish)以及水草(waterweeds)。系统在包含5,320张训练图像、1,520张验证图像和760张测试图像的专业水下数据集上进行训练和优化,克服了水下图像特有的光线散射、颜色失真、低对比度等技术挑战,实现了复杂水下环境中的高精度目标检测。

2025-05-24 09:12:30 1037

原创 基于深度学习YOLOv8的字母数字识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于最先进的YOLOv8深度学习框架,开发了一套高精度、高效率的字母数字识别检测系统,能够同时识别和分类36类字符(数字0-9及字母A-Z)。系统在包含4,245张训练图像、1,221张验证图像和610张测试图像的专用数据集上进行训练和优化,实现了复杂场景下的多字符实时检测与识别。本系统突破了传统技术在复杂场景下的局限性,特别针对字符变形、光照变化、背景干扰等挑战性问题进行了算法优化。

2025-05-24 09:02:15 670

原创 基于深度学习YOLOv8的工地运输车识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8深度学习算法,开发了一套高精度的工地运输车智能识别检测系统,专门用于识别和分类施工现场常见的三种运输车辆:挖掘机(EXCAVATORS)、自卸卡车(dump truck)和轮式装载机(wheel loader)。系统在包含2,244张训练图像、267张验证图像和144张测试图像的专用数据集上进行训练和优化,实现了在复杂工地环境下的高准确率目标检测。该系统具备实时监测、车辆分类和数据分析等功能,可广泛应用于施工现场管理、工程进度监控、自动化调度和安全监管等领域。

2025-05-24 08:54:31 1076

原创 基于深度学习YOLOv8的安全锥识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv8目标检测算法,研发了一套高效精准的安全锥识别检测系统,专门用于识别道路施工、事故现场等场景中的安全锥设施。系统采用深度学习技术,在包含5,960张训练图像、341张验证图像和170张测试图像的专业数据集上进行模型训练和优化,确保在各种复杂道路环境下都能实现高精度的安全锥检测。该检测系统具备实时识别、准确定位和智能分析功能,可广泛应用于智能交通管理、道路施工监控、自动驾驶环境感知等领域。

2025-05-24 08:47:19 1097

原创 基于深度学习YOLOv8的护目镜佩戴识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高精度的护目镜佩戴识别检测系统,能够实时准确地识别工作人员是否佩戴护目镜('Goggles'和'NO-Goggles'两类)。系统采用深度学习技术,在包含13,200张训练图像、1,256张验证图像和627张测试图像的大规模数据集上进行训练和优化,确保了模型在各种复杂环境下的鲁棒性和泛化能力。该检测系统可广泛应用于工业生产、实验室管理、建筑工地等需要眼部防护的场所,通过计算机视觉技术实现自动化的安全监管。

2025-05-24 08:37:36 851

原创 基于深度学习YOLOv8的Apex游戏人物识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv8目标检测算法,开发了一套高效、实时的Apex Legends(Apex英雄)游戏人物识别检测系统,能够精准识别游戏场景中的玩家角色(Avatar)和可交互物体(Object)两类目标。系统采用深度学习技术,在训练集(2,583张图像)、验证集(691张图像)和测试集(415张图像)上进行训练与优化,确保模型具备较高的检测精度与泛化能力。该系统可应用于游戏AI辅助、自动化测试、电子竞技分析、外挂检测等多个领域,为游戏开发者、电竞战队、内容创作者及反作弊系统提供智能化解决方案。

2025-05-24 08:28:27 1083

原创 基于深度学习YOLOv8的可回收塑料识别分类检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的可回收塑料识别分类检测系统。系统能够自动识别并分类7种不同类型的塑料制品,包括HDPE塑料、多层塑料、PET瓶、一次性塑料、单层塑料、挤压管和UHT盒。项目使用了大规模数据集进行训练和验证,其中训练集包含19,034张图像,验证集2,051张图像,测试集990张图像,确保了模型的泛化能力和鲁棒性。该系统通过计算机视觉技术实现了塑料废品的快速自动分类,为塑料回收行业提供了智能化解决方案,显著提高了垃圾分类的效率和准确性。

2025-05-24 08:21:51 696

原创 基于深度学习YOLOv8的热成像人员检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv8目标检测算法,开发了一套高效的热成像人员检测系统。系统使用热成像技术作为数据采集手段,专门针对人员检测任务进行优化,仅包含一个检测类别('person')。项目构建了一个规模可观的数据集,包含训练集21,422张图像、验证集3,061张图像以及测试集1,531张图像,总计26,014张热成像样本。该系统能够在各种光照条件下可靠地检测人员,具有重要的实际应用价值。通过深度学习技术与热成像传感器的结合,本系统突破了传统视觉检测在低光照条件下的局限性。

2025-05-24 08:13:41 888

原创 基于深度学习YOLOv10的寄生虫分类识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于先进的YOLOv10目标检测框架,开发了一套高精度的寄生虫显微图像识别系统,专门用于检测和分类8种常见人体寄生虫:钩虫(Ancylostoma Spp)、蛔虫(Ascaris Lumbricoides)、蛲虫(Enterobius Vermicularis)、肝吸虫(Fasciola Hepatica)、膜壳绦虫(Hymenolepis)、血吸虫(Schistosoma)、带绦虫(Taenia Sp)和鞭虫(Trichuris Trichiura)。

2025-05-23 17:00:25 761

原创 基于深度学习YOLOv10的水下生物识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套专门用于水下生物识别的智能检测系统,旨在实现对五种常见水下生物(海胆、海参、扇贝、海星和水草)的自动识别与定位。系统采用改进的YOLOv10模型架构,针对水下环境的特殊性进行了优化调整,在自构建的数据集上取得了优异的检测性能。该数据集包含7600张高质量标注图像,其中训练集5320张、验证集1520张、测试集760张,涵盖了各种水下场景和光照条件。本项目的开发为海洋生态研究、水产养殖监测和水下机器人视觉导航提供了可靠的技术支持。

2025-05-23 16:39:17 1057

原创 基于深度学习YOLOv10的字母数字识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于最新的YOLOv10目标检测框架,开发了一套高性能的字母数字识别系统,能够同时检测和识别图像中的36类字母数字字符(0-9数字和A-Z大写字母)。系统通过先进的深度学习算法实现对复杂场景下各类字符的精准定位和分类,为自动化识别、工业检测、智能交通等应用场景提供可靠的字符识别解决方案。项目采用包含6,076张高质量标注图像的专业数据集,其中训练集4,245张、验证集1,221张和测试集610张,通过科学的数据划分和增强策略确保模型具备强大的泛化能力。

2025-05-23 16:22:24 946

原创 基于深度学习YOLOv10的工地运输车识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于前沿的YOLOv10目标检测算法,开发了一套专门针对建筑工地运输车辆的智能识别系统,能够准确检测和分类三种典型工地运输车辆:挖掘机(EXCAVATORS)、自卸车(dump truck)和轮式装载机(wheel loader)。系统通过对工地监控视频或现场拍摄图像的实时分析,自动识别画面中的工程车辆并标记其位置和类型,为工地安全管理、车辆调度和自动化施工监控提供数据支持。项目使用包含2,655张精细标注图像的专业数据集进行模型训练和验证,其中训练集2,244张,验证集267张,测试集144张。

2025-05-23 16:09:35 797

原创 基于深度学习YOLOv10的安全锥识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套高效准确的安全锥识别检测系统,专门用于识别道路施工、交通事故现场等环境中的安全锥设施。系统通过对实时视频流或静态图像的智能分析,能够快速定位画面中的安全锥并标记其位置,为道路安全管理、自动驾驶环境感知和施工现场监控提供技术支持。项目使用包含6,471张标注图像的自建数据集进行训练和验证,其中训练集5,960张,验证集341张,测试集170张,实现了高精度的安全锥检测能力。该系统可广泛应用于智能交通系统、道路施工安全监控、自动驾驶辅助等领域。

2025-05-23 15:57:56 955

原创 基于深度学习YOLOv10的护目镜佩戴识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

本项目基于YOLOv10目标检测算法开发了一套护目镜佩戴识别检测系统,旨在自动检测工作人员是否正确佩戴护目镜这一重要的个人防护装备。系统通过对实时视频流或静态图像的智能分析,能够准确识别"佩戴护目镜(Goggles)"和"未佩戴护目镜(NO-Goggles)"两种状态,为工业安全、实验室管理、医疗防护等场景提供自动化监控解决方案。项目采用包含15,083张图像的数据集进行训练和评估,其中训练集13,200张,验证集1,256张,测试集627张,确保模型具有较高的识别准确率和泛化能力。

2025-05-23 15:48:25 879

数学建模的29个通用模型及matlab解法.zip

第01章 线性规划。 第02章 整数规划 第03章 非线性规划 第04章 动态规划 第05章 图与网络 第06章 排队论 第07章 对策论 第08章 层次分析法 第09章 插值与拟合 第10章 数据的统计描述和分析 第11章 方差分析 第12章 回归分析 第13章 微分方程建模 第14章 稳定状态模型 第15章 常微分方程的解法 第16章 差分方程模型 第17章 马氏链模型 第18章 变分法模型 第19章 神经网络模型 第20章 偏微分方程的数值解 第21章 目标规划 第22章 模糊数学模型 第23章 现代优化算法 第24章 时间序列模型 第25章 存贮论 第26章 经济与金融中的优化问题 第27章 生产与服务运作管理中的优化问题 第28章 灰色系统理论及其应用 第29章 多元分析 第30章 偏最小二乘回归

2024-05-14

第20章 偏微分方程的数值解.pdf

第20章 偏微分方程的数值解

2024-05-14

yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

2024-05-09

Squeezed Edge YOLO:边缘设备上的板载对象检测

由于其在自主导航中的关键作用,对高效车载物体检测的需求正在增加。然而,由于 YOLO 等资源受限的边缘设备上的计算要求很高,因此在此类模型上部署此类检测模型具有挑战性。本文研究了一种名为Squeezed Edge YOLO的压缩目标检测模型。该模型被压缩和优化为千字节的参数,以适应此类边缘设备的板载。为了评估 Squeezed Edge YOLO,使用了两个用例 - 人体和形状检测 - 来展示模型的准确性和性能。此外,该模型还部署在具有 8 个 RISC-V 内核的 GAP8 处理器和具有 4GB 内存的 NVIDIA Jetson Nano 上。实验结果表明,Squeezed Edge YOLO模型尺寸优化了8倍,能效提高了76%,整个过程提高了3.3倍。

2024-04-11

奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察

本研究探讨了单阶段和两阶段二维目标检测算法的应用,如你只看一次(YOLO)、实时设计模型(RT-DETR)算法在自动物体检测中的应用,以提高奥地利道路上自动驾驶的道路安全性。YOLO算法是一种最先进的实时物体检测系统,以其效率和准确性而闻名。在驾驶环境中,其快速识别和跟踪物体的潜力对于高级驾驶辅助系统(ADAS)和自动驾驶汽车至关重要。该研究的重点是奥地利的道路状况和交通情况带来的独特挑战。该国多样化的景观、不同的天气条件和特定的交通法规需要一种量身定制的方法来进行可靠的物体检测。该研究利用了一个选择性数据集,包括在奥地利道路上拍摄的图像和视频,包括城市、农村和高山环境。

2024-04-11

使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系

低表面亮度星系(LSBG)是星系群中较暗的成员,被认为是众多的。然而,由于它们的表面亮度低,寻找广域LSBGs样本是困难的,这反过来又限制了我们充分了解星系的形成和演化以及星系关系的能力。边缘LSBG由于其独特的方向,为研究星系结构和星系成分提供了极好的机会。在这项工作中,我们利用You Only Look Once目标检测算法,通过在斯隆数字巡天(SDSS)中训练281个边缘LSBG来构建边缘LSBG检测模型gri-波段合成图像。该模型在测试集上的召回率为94.64%,纯度为95.38%。我们搜索了 938,046gri来自 SDSS 数据发布 16 的波段图像,发现了 52,293 个候选 LSBG。为了提高候选LSBG的纯度并减少污染,我们采用了深度支持向量数据描述算法来识别候选样品中的异常。最终,我们编制了一个包含 40,759 个边缘 LSBG 候选药物的目录。该样本与训练数据集具有相似的特征,主要由蓝色边缘的 LSBG 候选者组成。该目录可通过此 https URL 在线获取。

2024-04-11

yolo使用TomFormer及早准确检测番茄叶病

番茄叶病对番茄种植者构成了重大挑战,导致作物产量大幅下降。及时准确地识别番茄叶病对于成功实施病害管理策略至关重要。本文介绍了一种基于变压器的模型,称为TomFormer,用于番茄叶病检测。该论文的主要贡献包括以下几点:首先,我们提出了一种检测番茄叶病的新方法,即采用结合视觉转换器和卷积神经网络的融合模型。其次,我们的目标是将我们提出的方法应用于Hello Stretch机器人,以实现番茄叶病的实时诊断。第三,我们通过将我们的方法与 YOLOS、DETR、ViT 和 Swin 等模型进行比较来评估我们的方法,证明其能够实现最先进的结果。为了进行实验,我们使用了三个番茄叶病数据集,即 KUTomaDATA、PlantDoc 和 PlanVillage,其中 KUTomaDATA 是从阿联酋阿布扎比的一个温室收集的。最后,我们对模型的性能进行了全面分析,并彻底讨论了我们方法固有的局限性。TomFormer 在 KUTomaDATA、PlantDoc 和 PlantVillage 数据集上表现良好,平均准确率 (mAP) 得分分别为 87%、81% 和 83%。mAP的比较结果表明,我们的方法

2024-04-11

YOLOv7无人机实时探测人体

计算机视觉和遥感中最重要的问题之一是物体检测,它可以识别图片中不同事物的特定类别。公共安全的两个关键数据来源是无人驾驶飞行器(UAV)产生的热红外(TIR)遥感多场景照片和视频。由于目标尺度小,场景信息复杂,相对于可观看视频的分辨率较低,并且缺乏公开可用的标记数据集和训练模型,因此其目标检测过程仍然很困难。本研究提出了一种用于图片和视频的UAV TIR目标检测框架。用于收集地面TIR照片和视频的前视红外(FLIR)相机用于创建基于CNN架构的“你只看一次”(YOLO)模型。结果表明,在验证任务中,使用YOLOv7(YOLO版本7)最先进的模型\cite{1},检测人体的平均精度为IOU(Intersection over Union)= 0.5,为72.5%,而检测速度约为161帧/秒(FPS/秒)。该应用展示了YOLO架构的实用性,该应用根据YOLOv7模型从各种无人机的观察角度评估了无人机TIR视频中人员的交叉检测性能。本工作对使用深度学习模型的TIR图片和视频目标检测进行定性和定量评估得到了有利的支持。

2024-04-11

使用 YOLO 对牛栏编号进行分类

本文介绍了CowStallNumbers数据集,该数据集是从奶牛视频中提取的图像集合,旨在推进奶牛摊位数量检测领域。该数据集包括 1042 张训练图像和 261 张测试图像,摊位数范围为 0 到 60。为了增强数据集,我们对YOLO模型进行了微调,并应用了数据增强技术,包括随机裁剪、中心裁剪和随机旋转。实验结果表明,识别失速数的准确率为95.4%。

2024-04-11

使用 YOLOv7 和 ESRGAN 改进坑洼检测

坑洼是常见的道路危险,会对车辆造成损坏并给驾驶员带来安全风险。卷积神经网络(CNN)的引入在业界广泛用于基于深度学习方法的目标检测,并在硬件改进和软件实现方面取得了重大进展。在本文中,提出了一种独特的更好算法,以保证使用低分辨率相机或低分辨率图像和视频源,通过超分辨率生成对抗网络(SRGAN)使用超分辨率(SR)进行自动坑洼检测。然后,我们继续使用 You Only Look Once (YOLO) 网络(即 YOLOv7 网络)在低质量和高质量行车记录仪图像上建立基线坑洼检测性能。然后,我们说明并检查了在对低质量图像进行放大实施后,在基准之上获得的速度和准确性。

2024-04-11

基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写

许多现有的无封面隐写术方法在封面图像和隐藏数据之间建立了映射关系。存在一个问题,即存储在数据库中的图像数量会随着隐写能力的增加而呈指数增长。对高隐写能力的需求使得构建图像数据库具有挑战性。为了提高隐写系统的图像库利用率和抗攻击能力,我们提出了一种基于动态匹配子串的高效无覆盖方案。YOLO用于选择最优对象,并在这些对象和加扰因子之间建立映射字典。借助该字典,每个图像都被有效地分配给特定的加扰因子,该因子用于加扰接收器的序列键。为了在有限的图像库中实现足够的隐写能力,加扰序列的所有子串都具有隐藏数据的潜力。完成秘密信息匹配后,将从数据库中获得理想数量的stego图像。实验结果表明,该技术在数据负载、传输安全性、隐藏能力等方面优于以往大多数工作。在典型的几何攻击下,它平均可以恢复79.85%的秘密信息。此外,只需要大约 200 个随机图像即可满足每个图像 19 位的容量。

2024-04-11

使用YOLO v7在磁共振成像中检测肾脏

简介 本研究探讨了使用最新的 You Only Look Once (YOLO V7) 物体检测方法,通过训练和测试医学图像格式上的改进 YOLO V7,来增强医学成像中的肾脏检测。方法 研究纳入878例肾细胞癌(RCC)不同亚型患者和206例肾脏正常患者。共检索到1084例患者的5657次MRI扫描。从回顾性维护的数据库中招募了 326 名患者,涉及 1034 个肿瘤,并在他们的肿瘤周围绘制了边界框。在 80% 的注释案例上训练了主要模型,其中 20% 用于测试(主要测试集)。然后使用最佳主要模型来识别其余 861 名患者的肿瘤,并使用该模型在他们的扫描中生成边界框坐标。创建了 10 个基准训练集,其中包含未分段患者的生成坐标。用于预测主要测试集中肾脏的最终模型。我们报告了阳性预测值(PPV)、灵敏度和平均精密度(mAP)。结果 初级训练集的平均PPV为0.94 +/- 0.01,灵敏度为0.87 +/- 0.04,mAP为0.91 +/- 0.02。最佳主要模型的 PPV 为 0.97,灵敏度为 0.92,mAP 为 0.95。最终模型的平均 PPV 为 0.95 +/- 0.03

2024-04-11

YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1

即将到来的平方公里阵列(SKA)将为天文仪器产生的数据量设定一个新标准,这可能会挑战广泛采用的数据分析工具,这些工具无法与数据大小进行充分扩展。本研究旨在通过应用现代深度学习目标检测技术,为海量射电天文数据集开发一种新的源检测和表征方法。这些方法已经证明了它们在复杂的计算机视觉任务中的效率,我们试图确定它们在应用于天文数据时的具体优势和劣势。我们介绍了YOLO-CIANNA,这是一款专为天文数据集设计的高度定制的深度学习目标探测器。本文介绍了该方法,并描述了解决射电天文图像特定挑战所需的所有低级适应。我们使用来自 SKAO SDC1 数据集的模拟 2D 连续体图像演示了这种方法的功能。我们的方法优于特定 SDC1 数据集上所有其他已发表的结果。使用 SDC1 指标,我们将挑战获胜分数提高了 +139\%,将唯一其他挑战后参与的分数提高了 +61\%。我们的目录的检测纯度为 94%,同时检测的来源比以前的最高分结果多 40 至 60%。经过训练的模型还可以强制在后处理中达到 99% 的纯度,并且仍然比其他高分方法多检测 10% 到 30% 的来源。它还能够实时检测,在单个 GPU 上每秒

2024-04-11

具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测

传统的人工检测焊点缺陷在工业生产中不再适用,因为效率低、评估不一致、成本高、缺乏实时数据。针对工业场景表面贴装技术中焊点缺陷检测精度低、误检率高、计算成本高等问题,提出了一种新的方法。所提出的解决方案是专门为焊点缺陷检测算法设计的混合注意力机制,通过提高精度同时降低计算成本来改善制造过程中的质量控制。混合注意力机制包括一种增强的多头自注意力和协调注意力机制,增加了注意力网络感知上下文信息的能力,并增强了网络特征的利用范围。坐标注意力机制增强了不同通道之间的连接,减少了位置信息丢失。混合注意力机制增强了网络感知远距离位置信息和学习局部特征的能力。改进后的算法模型对焊点缺陷检测具有较好的检测能力,mAP达到91.5%,比“只看一次”第5版算法高4.3%,优于其他对比算法。与其他版本相比,平均平均精度、精度、召回率和每秒帧数指标也有所改进。在满足实时检测要求的同时,可以提高检测精度。

2024-04-11

DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测

以YOLO系列为代表的目标检测模型得到了广泛的应用,并在高质量的数据集上取得了很好的成绩,但并不是所有的工作条件都是理想的。为了解决在低质量数据集上定位目标的问题,现有方法要么训练新的目标检测网络,要么需要大量低质量数据集进行训练。然而,我们在本文中提出了一个框架,并将其应用于称为 DiffYOLO 的 YOLO 模型。具体来说,我们从去噪扩散概率模型中提取特征图,以增强训练有素的模型,这使我们能够在高质量数据集上微调YOLO,并在低质量数据集上进行测试。结果证明,该框架不仅可以证明在噪声数据集上的性能,还可以证明在高质量测试数据集上的检测结果。我们稍后将补充更多的实验(使用各种数据集和网络架构)。

2024-04-11

YOLO-Former:YOLO与ViT握手

所提出的YOLO-Former方法将Transformer和YOLOv4的思想无缝集成,创建了一个高精度、高效率的目标检测系统。该方法利用了 YOLOv4 的快速推理速度,并通过集成卷积注意力和 transformer 模块,融合了 transformer 架构的优势。结果验证了所提方法的有效性,在Pascal VOC数据集上的平均精度(mAP)为85.76\%,同时保持了较高的预测速度,帧速率为每秒10.85帧。这项工作的贡献在于展示了这两种最先进技术的创新组合如何导致目标检测领域的进一步改进。

2024-04-11

基于深度学习的综合感知与通信系统中的目标-用户关联

在集成传感和通信 (ISAC) 系统中,将雷达目标与通信用户设备 (UE) 相匹配可用于多种通信任务,例如主动切换和波束预测。在本文中,我们考虑了一种雷达辅助通信系统,其中基站(BS)配备了具有双重目标的多输入多输出(MIMO)雷达:(i)将车载雷达目标与通信波束空间中的车载设备(VE)相关联,以及(ii)根据雷达数据预测每个VE的波束成形矢量。建议的目标用户 (T2U) 关联包括两个阶段。首先,从距角图像中检测车辆雷达目标,并估计每个目标的波束成形矢量。然后,将推断出的每目标波束成形矢量与BS上用于通信的波束成形矢量进行匹配,以执行目标到用户(T2U)关联。通过修改“只看一次”(YOLO)模型,在模拟的距离角度雷达图像上进行训练,从而获得联合多目标检测和波束推理。不同城市车辆出行情景下的仿真结果表明,所提T2U方法提供了随BS天线阵列尺寸增加而增加的正确关联概率,突出了波束空间中VE可分离性的相应增加。此外,我们表明,改进后的YOLO架构可以有效地进行波束预测和雷达目标检测,在不同天线阵列尺寸下,后者的平均精度相似。

2024-04-11

使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作

优化普通种植作物的作物收获过程对于农业产业化的目标具有重要意义。如今,机器视觉的利用使农作物的自动识别成为可能,从而提高了收割效率,但挑战仍然存在。本研究提出了一个新框架,该框架结合了卷积神经网络(CNN)的两个独立架构,以便在模拟环境中同时完成作物检测和收获(机器人操作)的任务。模拟环境中的裁剪图像会进行随机旋转、裁剪、亮度和对比度调整,以创建用于数据集生成的增强图像。“你只看一次”算法框架与传统的矩形边界框一起使用,用于作物定位。随后,所提出的方法通过视觉几何组模型利用获取的图像数据,以揭示机器人操作的抓取位置。

2024-04-11

YOLO-World:实时开放词汇对象检测

You Only Look Once (YOLO) 系列探测器已成为高效实用的工具。但是,它们对预定义和训练对象类别的依赖限制了它们在开放场景中的适用性。为了解决这一局限性,我们引入了 YOLO-World,这是一种创新方法,通过视觉语言建模和大规模数据集的预训练,增强了 YOLO 的开放词汇检测功能。具体而言,我们提出了一种新的可重新参数化的视觉-语言路径聚合网络(RepVL-PAN)和区域-文本对比损失,以促进视觉和语言信息之间的交互。我们的方法擅长以零射程、高效率检测各种物体。在具有挑战性的 LVIS 数据集上,YOLO-World 在 V100 上以 52.0 FPS 实现了 35.4 AP,在准确性和速度方面都优于许多最先进的方法。此外,经过微调的 YOLO-World 在多个下游任务上取得了出色的性能,包括对象检测和开放词汇实例分割。

2024-04-11

基于YOLO的红外小目标检测范式

在计算机视觉中,检测红外图像中从小到小的目标是一项具有挑战性的任务,尤其是在将这些目标与嘈杂或有纹理的背景区分开来时。与分割神经网络相比,YOLO 等传统目标检测方法难以检测微小目标,导致检测小目标时性能较弱。为了在保持高检测率的同时减少误报的数量,我们引入了反之亦然YOLO检测器训练的决策标准。后者利用了出乎意料的小目标,以区分他们与复杂背景。将这一统计标准添加到YOLOv7-tine中,弥合了用于红外小目标检测和目标检测网络的最先进的分割方法之间的性能差距。它还显著提高了YOLO在少镜头设置下的鲁棒性。

2024-04-11

深度学习 国际象棋游戏数据集

数据集介绍 数据介绍 这是从Lichess.org网站上的精选用户那里收集的20,000多个游戏的集合,以及如何收集更多游戏。将来,我还会收集更多游戏。 内容范围 游戏编号; 额定(T / F); 开始时间; 时间结束; 转弯数量; 游戏状态; 优胜者; 时间增量; 白色玩家编号; 白人球员等级; 黑人玩家ID; 黑人球员等级; 标准象棋符号的所有动作; 开放的生态(任何给定开口的标准化代码,在此处列出); 开幕名称; 开启层(开启阶段的移动次数) 探索方向 单个国际象棋游戏中包含许多信息,更不用说多个游戏的完整数据集了。它主要是一种模式游戏,而数据科学就是要检测数据模式,这就是为什么国际象棋是过去在AI领域投入最多的原因之一。该数据集收集了20,000个游戏中可用的所有信息,并以易于处理的格式进行了分析,例如,分析了允许玩家以黑白棋获胜的方式,多少元(游戏外)影响游戏的因素,黑白与空缺与胜利之间的关系等等。

2024-07-31

深度学习行人检测数据集

行人检测的图片,内置10000张行人图像,1000张骑自行车图像,1000张骑车图像。

2024-07-31

Kolektor:表面缺陷数据集

该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集介绍 该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集包括: 399幅图片:52幅可见缺陷图像、347幅图像无任何缺陷 尺寸的原始图像:宽度:500 px,高度:1240至1270 px 对于训练和评估,图像应该调整到512 x 1408 px。 对于每个项目,缺陷仅在至少一个图像中可见,而两个项目在两个图像上有缺陷,这意味着有52个图像中的缺陷是可见的。其余347幅图像作为无缺陷表面的负面例子.

2024-07-31

第14章 稳定状态模型.pdf

第14章 稳定状态模型

2024-05-14

第05章 图与网络.pdf

第05章 图与网络

2024-05-14

第21章 目标规划.pdf

第21章 目标规划

2024-05-14

第28章 灰色系统理论及其应用.pdf

第28章 灰色系统理论及其应用

2024-05-14

第06章 排队论.pdf

第06章 排队论

2024-05-14

第16章 差分方程模型.pdf

第16章 差分方程模型

2024-05-14

第07章 对策论.pdf

第07章 对策论

2024-05-14

第19章 神经网络模型.pdf

第19章 神经网络模型

2024-05-14

第23章 现代优化算法.pdf

第23章 现代优化算法

2024-05-14

第09章 插值与拟合.pdf

第09章 插值与拟合

2024-05-14

第08章 层次分析法.pdf

第08章 层次分析法

2024-05-14

第12章 回归分析.pdf

第12章 回归分析

2024-05-14

第13章 微分方程建模.pdf

第13章 微分方程建模

2024-05-14

第30章 偏最小二乘回归.pdf

第30章 偏最小二乘回归

2024-05-14

第11章 方差分析.pdf

第11章 方差分析

2024-05-14

第25章 存贮论.pdf

第25章 存贮论

2024-05-14

第04章 动态规划.pdf

第04章 动态规划

2024-05-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除