引言
随着视频平台的普及,B站(哔哩哔哩)作为中国知名的弹幕视频网站,拥有大量用户和内容创作者。视频的播放量、点赞数、收藏数等反映了用户对视频的关注度和喜爱程度,通过爬取这些数据并构建视频流行趋势预测模型,可以帮助内容创作者优化发布策略、预测视频流行趋势,为运营决策提供数据支持。
目录
一、项目背景与需求分析
-
目标
- 爬取B站某类视频(如某个UP主或某个分区下的视频)的大量数据,获取播放量、点赞数、弹幕数、收藏数等核心指标。
- 分析视频的用户行为模式,建立一个视频流行趋势的预测模型,预测未来某个视频的流行程度。
-
工具选择
- 数据爬取:
requests
库与BeautifulSoup
库结合使用,或直接使用B站API
。 - 数据处理与分析:
Pandas
用于数据处理,Matplotlib
、Seaborn
用于可视化。 - 机器学习与预测模型:
scikit-learn
、XGBoost
用于构建模型,时间序列分析可以采用ARIMA
或LSTM
。
- 数据爬取: