自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(158)
  • 收藏
  • 关注

原创 字节填充的意义

在数据传输中,某些特定字符(如帧起始符、帧结束符)具有控制意义。字节填充(Byte Stuffing)是一种数据链路层协议中常用的技术,主要用于解决数据传输中的特殊字符冲突问题。可表示为: [ D' = D \text{(普通字符)} \cup {ESC \oplus C \mid C \in D \text{且为控制字符}} ]字节填充使数据字段可以包含任意比特组合,不受控制字符限制,实现数据的透明传输。例如,在PPP协议中,用。字节填充允许协议灵活处理数据内容,无需依赖硬件层对特殊字符的规避。

2025-06-26 16:35:33 322

原创 softmax和交叉熵的配合求导

Softmax函数将输入向量转换为概率分布,公式为: $$ \sigma(\mathbf{z}){j=1}^K e^{z_j}} $$ 其中,$\mathbf{z}$为输入向量,$K$为类别数,$\sigma(\mathbf{z})_i$表示第$i$类的预测概率。交叉熵损失用于衡量预测概率分布与真实分布的差异。

2025-06-25 19:59:25 300

原创 storage 在 Pytorch 中的用途

可以直接操作原始内存数据,适用于需要低级别控制的场景(如自定义 C++ 扩展)。,即使它们的形状或维度不同。这种机制避免了数据复制,提升了内存效率。,可以实现高效的内存管理和数据操作,但需注意底层细节以避免错误。,即使它们的形状(shape)或步幅(stride)不同。是连续的一维内存块,通常存储相同类型的数据(如。张量通过视图(view)机制,将。是一个底层数据结构,用于实际存储张量(每个张量的数据都依赖于一个。对象,但多个张量可以共享同一个。中的数据以多维形式呈现。多个张量可以共享同一。

2025-06-24 20:25:31 311

原创 dtype

dtype是数据类型的缩写,通常用于编程和数据处理领域,特别是在Python的NumPy和Pandas库中。它定义了数组中元素的类型,例如整数、浮点数、字符串等。dtype的选择直接影响数据的存储效率、计算精度以及内存占用。通过合理设置dtype,可以显著提升程序的效率和性能。

2025-06-24 19:39:31 193

原创 torch.optim.SGD(net.parameters())

是 PyTorch 中实现随机梯度下降(Stochastic Gradient Descent)的优化器。SGD 适用于多数深度学习任务,在批归一化等技术的配合下能取得较好效果。对于稀疏数据或需要自适应学习率的场景,可考虑 Adam 等其他优化器。

2025-06-24 16:53:03 332

原创 bias.data.fill_(0)

bias.data.fill_(0)是PyTorch中将神经网络的偏置参数初始化为0的操作。它通过.data访问原始张量,使用.fill_()方法原地填充0值,常用于模型初始化或参数重置。该操作会绕过梯度计算,若需保留梯度应配合torch.no_grad()使用。等效操作包括nn.init.zeros_(layer.bias)。典型应用场景包括模型训练前的参数初始化和特定情况下的参数清零。

2025-06-24 16:36:15 296

原创 nn.Sequential和nn.Linear

权重矩阵 ( A ) 的形状为 ( 5 \times 10 ),偏置向量 ( b ) 的形状为 ( 5 )。是 PyTorch 中的全连接层(线性层),用于实现线性变换。其数学形式为 ( y = xA^T + b ),其中 ( A ) 是权重矩阵,( b ) 是偏置向量。这个模型将 784 维输入(如 flattened MNIST 图像)通过两个隐藏层映射到一个输出,并使用 Sigmoid 激活函数生成概率。输入数据首先通过第一个线性层,然后经过 ReLU 激活,最后通过第二个线性层输出。

2025-06-24 16:28:29 354

原创 nn.sequential(nn.linear(2,1))

的权重会从均匀分布$U(-\sqrt{k}, \sqrt{k})$初始化,其中$k = \frac{1}{in_features}$,偏置初始化为0。计算过程相当于: $output = w_1 \times x_1 + w_2 \times x_2 + b$该模型仅包含一个线性层,将2维输入映射为1维输出。线性层的权重矩阵维度为1×2,偏置维度为1。构建一个简单的神经网络模型,输入维度为2,输出维度为1。

2025-06-24 16:24:05 287

原创 next()with iter()

时,需要传入一个迭代器对象,它会返回迭代器的下一个值。如果迭代器耗尽(没有更多元素),则会抛出。常用于手动控制迭代过程,例如在处理大型数据时仅获取第一个匹配项,或结合。是 Python 的内置函数,用于从迭代器中获取下一个元素。当迭代器耗尽时,会返回该默认值而非抛出异常。结合使用,用于手动控制迭代过程。

2025-06-24 16:06:00 172

原创 DataLoader

DataLoader 是 PyTorch 中用于高效加载数据的工具,支持数据批处理、多线程/进程加载、内存优化等功能。它通过Dataset和DataLoader类实现数据管道的封装,常用于深度学习训练场景。以下是一个加载图像数据的自定义Datasetimport os。

2025-06-24 16:02:16 616

原创 gluon.data.ArrayDaraset

是 Apache MXNet(Gluon API)中的一个数据加载工具,用于将多个 NumPy 数组或类似数组的对象组合成一个数据集。它适用于简单的小规模数据加载场景,常用于原型设计或快速实验。

2025-06-24 15:55:45 317

原创 .synthetiic_data

合成数据是通过算法或模拟生成的人工数据,而非从真实世界直接收集。这类数据在隐私保护、模型训练、测试场景构建等领域具有广泛应用,尤其在真实数据稀缺或敏感的场合。

2025-06-24 15:50:50 247

原创 直接序列扩频、调频扩频

扩频过程可通过以下公式表示: $s(t) = d(t) \cdot c(t) \cdot \cos(2\pi f_c t)$ 其中$d(t)$为数据信号,$c(t)$为伪随机码,$f_c$为载波频率。跳频信号表达式为: $s(t) = d(t) \cdot \cos(2\pi f_i t + \phi_i)$ 其中$f_i$为第i个跳频时刻的载波频率,$\phi_i$为相位。跳频图案由伪随机码决定,跳变速率可分为慢跳频(多个符号周期跳一次)和快跳频(一个符号周期跳多次)。

2025-06-23 20:10:54 172

原创 红外通信、激光通信

红外通信利用红外光(波长700nm-1mm)作为信息载体,采用调制技术(如ASK、PWM)将信号加载到红外光束上。典型应用包括家电遥控器、短距离数据传输(如IrDA标准)。优点在于成本低、抗电磁干扰;缺点是传输距离短(通常<10米)、需直线传播且易受环境光线干扰。激光通信以高强度相干激光(如波长850nm、1550nm)传输信息,分为自由空间光通信(FSO)和光纤通信。优势包括高速率(可达100Gbps以上)、长距离(太空通信达数百万公里)、强抗干扰;缺点是设备成本高、需精密对准(尤其是FSO)。

2025-06-23 19:41:16 214

原创 微波通讯和卫星通信

微波通讯利用频率范围为300MHz至300GHz的电磁波进行信息传输,具有带宽大、抗干扰性强等特点,适用于视距范围内的点对点通信。卫星通信通过地球同步轨道(GEO)或低轨道(LEO)卫星作为中继,实现全球覆盖,尤其适用于偏远地区。

2025-06-23 19:40:04 166

原创 requires_grad=True

是一个张量属性,用于指示该张量是否需要计算梯度。梯度是反向传播中用于优化模型参数的关键部分。,可以高效控制模型的训练过程。在 PyTorch 中,在创建张量时或之后启用。

2025-06-23 15:47:30 473

原创 yield

是 Python 中的一个关键字,用于定义生成器函数。生成器函数返回一个迭代器,可以通过。逐步产生值,而不是一次性返回所有结果。生成器函数在每次调用。语句暂停,并保存当前状态,下次继续执行后续代码。

2025-06-23 15:32:31 250

原创 random.shuffle

模块提供的一个函数,用于随机打乱序列(如列表)中元素的顺序。它直接修改原序列,而不返回新的序列。如果不想修改原列表,可以用。是 Python 中。

2025-06-23 15:28:59 310

原创 plt.scatter

是 Matplotlib 中用于绘制散点图的函数,通过指定 x 和 y 坐标数据,可以展示数据的分布情况。

2025-06-23 15:17:06 363

原创 .detach()

是 PyTorch 中的一个方法,主要用于从计算图中分离张量,使其不再参与梯度计算。通常在需要中断梯度反向传播或需要将张量转换为普通 NumPy 数组时使用。

2025-06-23 11:26:36 222

原创 sys.argv

模块提供的一个列表,用于获取命令行参数。脚本运行时,通过命令行输入的参数会被存储在这个列表中,方便程序调用。是 Python 中。

2025-06-23 10:02:01 687

原创 .strip()

方法用于移除字符串开头和结尾的指定字符(默认为空白字符)。

2025-06-23 09:35:53 330

原创 .rename(none)

通常用于数据处理或编程中,目的是取消对列或变量的重命名操作,恢复默认名称或清除自定义命名。以下是几种常见场景下的使用方法。

2025-06-22 17:06:41 153

原创 refine_names()

是一个用于数据清洗的函数,通常出现在数据处理库(如或)中,主要用于规范化列名或变量名,使其更符合编程规范或分析需求。

2025-06-22 16:59:40 296

原创 .unsqueeze(-1).unsqueeze_(-1)

是用于调整张量形状的操作。在 PyTorch 中,

2025-06-22 16:35:15 276

原创 mean(-3)

是一个数学表达式,通常表示对某个数据集合或数组在特定维度(如第 -3 维)上求平均值。具体含义取决于上下文和使用的编程语言或数学工具。输出结果为合并第一维后的平均值,形状为 ( (3, 4) )。表示从后往前数的第三维(即第一维)。在 Python 的 NumPy 或类似库中,是计算数组平均值的方法,参数。指定沿哪个维度计算。表示从后往前数的维度。

2025-06-22 16:25:23 144

原创 torch.randon(3, 5, 5)

可能是用户对 PyTorch 随机生成张量函数的误写。正确的函数名称应为或,分别用于生成均匀分布或标准正态分布的随机张量。

2025-06-22 16:16:18 359

原创 torch.randn

是 PyTorch 中用于生成服从标准正态分布(均值为 0,标准差为 1)的张量的函数。生成的张量中的元素是从正态分布中随机采样的。

2025-06-22 16:14:28 402

原创 torch.tensor

是 PyTorch 中用于创建张量的核心函数。张量是多维数组的抽象,类似于 NumPy 的。,但支持 GPU 加速和自动微分功能。参数指定张量数据类型(如。

2025-06-22 16:13:31 214

原创 凸函数和凹函数

一个函数 ( f: \mathbb{R}^n \to \mathbb{R} ) 是凸函数,如果对于任意的 ( x, y \in \mathbb{R}^n ) 和任意的 ( \theta \in [0, 1] ),满足: [ f(\theta x + (1 - \theta) y) \leq \theta f(x) + (1 - \theta) f(y) ] 几何意义是连接函数图像上任意两点的线段位于函数图像上方。

2025-06-22 15:25:31 425

原创 PDU与SDU

在通信协议中,PDU(Protocol Data Unit,协议数据单元)和SDU(Service Data Unit,服务数据单元)是两个关键术语,用于描述数据传输过程中的数据封装和分层处理。在分层协议架构(如OSI模型或TCP/IP模型)中,每一层的SDU是上一层的PDU。数据从高层向低层传递时,每一层会将上层PDU作为本层的SDU,并添加本层的头部信息封装为新的PDU。通过理解PDU和SDU,可以更清晰地掌握协议栈中数据的封装与传递机制。

2025-06-18 20:08:27 452

原创 实体、协议、服务和服务访问点

协议是实体间通信或交互时遵循的规则和标准,确保数据格式、传输方式和行为的一致性。服务访问点是实体向外部暴露的接口,用于接收请求或发送数据。在计算机或通信系统中,实体指能够独立执行功能的逻辑或物理单元。服务是由实体提供的能力或功能,通常通过接口对外暴露。SAP是实体与服务使用者之间的交互桥梁,需确保可访问性和安全性。实体通常具有唯一标识,并能与其他实体交互以实现特定目标。协议通常通过分层架构(如OSI模型)实现模块化协作。服务通常以松耦合方式设计,便于扩展和复用。

2025-06-18 20:03:34 199

原创 数据在各层之间的传递过程数据传递的基本概念

在发送数据时,每一层会在上层传递来的数据上添加本层的控制信息(头部或尾部),这个过程称为封装。封装后的数据单元在不同层有不同的名称,如数据段(传输层)、数据包(网络层)、数据帧(数据链路层)。数据在各层之间的传递通常发生在计算机网络或软件架构的分层模型中,如OSI七层模型、TCP/IP四层模型或应用程序的分层架构(如MVC)。网络层和数据链路层也可能有各自的差错控制机制,如校验和或CRC校验。接收数据时,每一层会剥离本层的控制信息,并将剩余数据传递给上层,这个过程称为解封装。

2025-06-18 19:59:41 238

原创 TCP/IP协议族

TCP/IP协议族是互联网通信的基础架构,包含一系列分层协议,用于定义数据如何在网络间传输。其名称来源于两个核心协议:传输控制协议(TCP)和互联网协议(IP)。该协议族采用四层模型(或与OSI七层模型对应),涵盖从物理连接到应用层的完整通信流程。

2025-06-18 19:54:54 425

原创 广播机制2

比较数组形状时从右向左逐维度检查。两个数组的对应维度长度必须相等或其中一个为1。若某一数组的维度不足,在其形状左侧补1。满足条件后,长度为1的维度会复制数据以匹配另一数组的对应维度长度。

2025-06-18 17:14:21 252

原创 GPU编程中的广播机制

广播(Broadcasting)是NumPy和PyTorch等框架中用于处理不同形状张量间运算的机制。它允许在不显式复制数据的情况下,对形状不同的张量进行逐元素操作。广播机制极大简化了张量运算代码,但需要深入理解其规则以避免潜在问题。例如形状为(3,1)和(1,4)的张量可以广播为(3,4)。

2025-06-18 17:00:49 221

原创 广播机制1

广播机制是一种在计算机科学和分布式系统中广泛使用的通信模式,允许一条消息从一个发送者传递给多个接收者。它常见于网络协议、操作系统、GPU编程等领域,具体实现方式和应用场景各异。

2025-06-18 16:57:57 266

原创 自动微分和计算图

反向模式(即反向传播)适用于输入变量多、输出变量少的场景,深度学习框架如TensorFlow和PyTorch主要采用反向模式。不同于符号微分和数值微分,自动微分通过在计算过程中记录操作序列(计算图)来精确计算导数。它是一个有向无环图(DAG),节点表示变量或操作(如加法、乘法),边表示数据依赖关系。静态计算图(如TensorFlow 1.x)在运行前需先定义完整的图结构,优点是编译器可以进行优化,但灵活性较差。属性标记需要计算梯度的变量,框架会跟踪这些变量的操作以构建计算图。

2025-06-18 10:10:00 324

原创 transforms.ToPILImage()

模块的一个常用方法,用于将张量(Tensor)转换为 PIL 图像。以下是具体的使用方法和注意事项。通过以上步骤,可以高效地将张量转换为 PIL 图像,适用于模型输出可视化或后续图像处理任务。可直接用于 PIL 的图像操作(如保存、显示等)。是 PyTorch 中。

2025-06-17 16:20:32 301

原创 torch.unsqueeze

是 PyTorch 中的一个张量操作函数,用于在指定维度上增加一个大小为 1 的维度。这个操作通常用于调整张量的形状,使其满足某些操作的要求。,可以灵活调整张量的形状以满足不同操作的需求。

2025-06-17 16:08:14 389

if章节笔记markdown版

if章节笔记markdown版

2024-07-22

04-运算符.md

04-运算符

2024-07-20

03-数据类型转换.md

03-数据类型转换

2024-07-20

01-输出.md

01-输出

2024-07-20

02-输入.md

02-输入

2024-07-20

01-注释.md

01-注释

2024-07-20

02-bug.md

02-bug

2024-07-20

02-变量.md

02-变量

2024-07-20

03-数据类型.md

03-数据类型

2024-07-20

10-快速体验数据类型转换.py

10-快速体验数据类型转换

2024-07-20

11-复合赋值运算符.py

11-复合赋值运算符

2024-07-20

07-格式化字符串.py

07-格式化字符串

2024-07-20

09-输入.py

09-输入

2024-07-20

13-数字之间的逻辑运算.py

13-数字之间的逻辑运算

2024-07-20

01-注释.py

01-注释

2024-07-20

15-网吧上网.py

15-网吧上网

2024-07-20

10-数据类型转换函数.py

10-数据类型转换函数

2024-07-20

15-网吧上网(进阶版).py

15-网吧上网(进阶版)

2024-07-20

08-转义字符.py

08-转义字符

2024-07-20

14-if语句.py

14-if语句

2024-07-20

03-认识数据类型.py

03-认识数据类型

2024-07-20

05-格式化输出.py

05-格式化输出

2024-07-20

04-输出_认识格式化符号.py

04-输出_认识格式化符号

2024-07-20

02-变量.py

02-变量

2024-07-20

12-逻辑运算符.py

12-逻辑运算符

2024-07-20

Python和Mu下载和安装笔记(Markdown)

Python和Mu下载和安装笔记(Markdown)

2024-05-11

markdown语法笔记(mardown版本)

markdown语法笔记(mardown版本)

2024-05-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除