揭秘模型上下文:AI如何理解长文本?

一,模型的上下文相关概念理解

1.模型上下文

模型上下文(Model Context 或 Context Length) 是指语言模型在一次推理过程中,能够同时看到并处理的最大文本长度 (以 token 为单位),就是与当前任务目标直接相关的输入数据的局部或全局关联信息

这个“上下文”包含两个部分:

部分含义
输入内容(Prompt)用户输入的提示、问题、指令等
输出内容(Generation)模型生成的回答或续写内容

也就是说,模型在生成每一个字的时候,都要基于它在整个上下文中已经看到的内容进行判断。

2.上下文窗口

这是模型在预测每个输出时实际使用的文本片段的范围

在transformer模型中,context window是通过注意力机制来定义的,它决定了模型在生成每个新token时可以参照的前面tokens的数量

context window的大小对模型的性能有显著影响,尤其是在长文本处理和内容生成方面。它决定了在生成过程中,模型可以参考的上下文信息的量。这有助于模型生成连贯且相关的文本,而不会因为参考过多的上下文而导致混乱或不相关的输出。

换句话说,大模型在生成输出时,就像从一个大型的图书馆(数据库)中寻找和调取相关信息。这些信息可以帮助模型生成准确和连贯的回答。

Context Window就像是模型能够一次性从书架上取下的书籍数量。Context Window越大,模型可以参考的信息量就越多,生成的答案也可能更详细和丰富。

3.上下文长度

这是模型的一个硬性限制参数 ,表示它在单次预测中能处理的 最大 token 数量它包括了用户输入的所有token以及模型生成的所有token。由位置编码的设计(如 RoPE、ALiBi)决定 。(所以说提示词不是越长越详细越好,最好是要言简意赅)

例如:

  • 如果一个模型的上下文长度是 2048 tokens

    那么它最多只能处理:

    • 输入 + 输出总和不超过 2048 的 token

⚠️ 超出怎么办?

如果输入内容太长(比如一整篇论文),超出了模型的上下文限制,就可能被截断或无法完整理解。


🔤 什么是 Token?

Token 是模型处理文本时的最小单位。它可以是一个词、一个标点、一个子词,甚至一个字符,具体取决于模型使用的分词器(Tokenizer)

举个例子:

文本Token 数量(LLaMA 分词器为例)
“Hello, world!”3 tokens:[“Hello”, “,”, " world!"]
“人工智能的发展令人惊叹”6 tokens:[“人工”, “智能”, “的”, “发展”, “令”, “人”, “惊叹”](假设每个双字为一个 token)

📌 常见模型支持的上下文长度举例:

模型名称默认上下文长度是否可扩展
GPT-3.54096 tokens❌ 不可扩展
GPT-48192 tokens(也有 32768 版本)❌ 不可扩展
LLaMA / LLaMA22048 tokens✅ 可通过插值等技术扩展
ChatGLM(初代)1024 tokens✅ 扩展后可达数千
InternLM2048~32768 tokens(不同版本)✅ 支持扩展
Mistral32768 tokens✅ 原生支持大上下文
Qwen32768 tokens✅ 原生支持

🧱 上下文长度的作用是什么?

这决定了模型在以下任务中的表现能力:

任务上下文长度影响
💬 回答问题需要看到完整的背景信息才能准确回答
📄 总结文档需要读取整篇内容后提炼关键信息
🧾 编程辅助理解整个函数/类结构后再生成代码
🧠 多轮对话记忆维持历史记录以便上下文连贯
🎥 视频/音频转写分析处理长文本内容进行推理或分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值