新手指南:用提示词优化代码的 3 个实用技巧
在编程学习和开发过程中,新手常遇到代码运行效率低、可读性差、存在 bug 却难以定位的问题。借助大模型的代码处理能力,通过合理的提示词引导,能快速优化代码质量 —— 比如让冗余代码更简洁、让低效算法更高效、让混乱代码更易读。但很多新手不知道如何写提示词,导致大模型优化后的代码仍不符合预期。本文将聚焦新手需求,详细讲解用提示词优化代码的 3 个核心实用技巧,每个技巧都搭配具体场景案例、提示词模板和效果对比,帮助新手快速上手,用提示词轻松优化代码。
一、基础认知:为什么提示词能优化代码?
1.1 大模型的代码处理能力
目前主流大模型(如 GPT-4、Claude 3、CodeLlama)通过训练海量代码数据,具备了代码理解、语法纠错、逻辑优化、性能提升等能力。它们能识别代码中的冗余结构、低效算法、语法错误,还能根据编程语言规范(如 Python 的 PEP 8、Java 的 Google 编码规范)调整代码格式和风格。
比如输入一段存在冗余循环的 Python 代码,模型能识别出 “重复执行的相同逻辑”,并优化为更简洁的列表推导式;输入一段缩进混乱的 Java 代码,模型能按规范调整缩进,补充必要注释,提升可读性。
1.2 提示词的核心作用
提示词是连接用户需求和大模型能力的桥梁。没有提示词时,模型不知道用户需要 “优化代码的哪方面”(是性能、可读性还是 bug 修复);有了清晰的提示词,能明确告诉模型 “优化目标、优化标准、输出要求”,让模型精准发力,避免优化方向偏差。
比如简单说 “优化这段代码”,模型可能只做简单格式调整;而提示词 “优化这段 Python 代码:1. 目标:提升循环执行效率,减少运行时间;2. 标准:用列表推导式或内置函数替代 for 循环;3. 输出:对比优化前后的代码,说明优化思路和效率提升点”,模型会按要求聚焦性能优化,给出更有价值的结果。
1.3 新手用提示词优化代码的优势
1.3.1 降低优化门槛
新手对 “代码优化技巧”(如算法选择、语法简化)掌握不足,通过提示词让模型给出优化方案,无需自己深入研究优化原理,就能快速得到高质量代码。
1.3.2 节省时间成本
手动优化代码需要反复调试、验证,新手可能花费几小时才能解决一个性能问题;用提示词引导模型优化,几分钟就能得到优化结果,再结合手动验证,大幅节省时间。
1.3.3 学习优化思路
模型在优化代码时,若提示词要求 “说明优化思路”,新手能通过模型的解释,理解 “为什么这样优化”“优化依据是什么”,间接学习代码优化知识,提升自身编程能力。
二、实用技巧一:明确 “优化维度”,让提示词聚焦目标
2.1 核心逻辑
代码优化包含多个维度(性能、可读性、语法纠错、兼容性等),新手若不明确维度,提示词会过于宽泛,模型可能 “雨露均沾” 却没做好重点优化。明确 “优化维度”,就是在提示词中清晰指出 “要优化代码的哪一方面”,让模型集中资源解决核心问题。
比如需要优化一段 “处理数据的 Python 代码”,若目标是 “让代码运行更快”,就明确 “优化维度为性能”;若目标是 “让同事能看懂代码”,就明确 “优化维度为可读性”。
2.2 常见优化维度及提示词模板
2.2.1 维度 1:性能优化(提升运行效率)
适用场景:代码运行慢(如循环次数多、算法复杂)、占用内存高,需要减少运行时间或内存消耗。
提示词模板:
“请优化以下 [编程语言,如 Python/Java] 代码,优化维度为性能,具体要求:
- 分析当前代码的性能瓶颈(如冗余循环、低效算法、重复计算);
- 针对瓶颈进行优化,优先使用 [具体优化方式,如 “内置函数替代 for 循环”“更高效的算法(如哈希表)”“减少变量重复创建”];
- 输出内容包含:① 优化前代码;② 优化后代码;③ 性能瓶颈分析(100 字以内);④ 优化思路(说明用了什么方法,为什么能提升性能,100 字以内);⑤ 优化前后的运行时间对比(假设测试数据:[具体测试数据,如 “处理 10000 条数据”],估算时间即可)。
待优化代码:
[粘贴需要优化的代码]”
2.2.2 维度 2:可读性优化(提升代码易懂性)
适用场景:代码缩进混乱、变量命名不规范、无注释或注释模糊,需要让代码更易读、易维护。
提示词模板:
“请优化以下 [编程语言,如 Python/Java] 代码,优化维度为可读性,具体要求:
- 按 [编程语言规范,如 “Python PEP 8 规范”“Java Google 编码规范”] 调整代码格式(缩进、空格、换行);
- 优化变量 / 函数命名:命名要见名知意(如将 “a” 改为 “user_count”,将 “f1 ()” 改为 “calculate_total_price ()”);
- 补充注释:① 在函数 / 类上方添加 “功能说明 + 参数含义 + 返回值含义” 的注释;② 在复杂逻辑(如条件判断、循环)处添加行注释,说明 “为什么这么写”;
- 输出内容包含:① 优化前代码;② 优化后代码;③ 可读性优化点总结(分点说明:格式调整、命名优化、注释补充的具体内容)。
待优化代码:
[粘贴需要优化的代码]”
2.2.3 维度 3:语法纠错优化(修复代码错误)
适用场景:代码运行报错(如语法错误、逻辑错误、变量未定义),新手无法快速定位和修复。
提示词模板:
“请优化以下 [编程语言,如 Python/Java] 代码,优化维度为语法纠错,具体要求:
- 先分析代码中的错误(包括语法错误,如括号缺失、变量未定义;逻辑错误,如条件判断错误、循环边界错误);
- 修复所有错误,确保代码能正常运行;
- 输出内容包含:① 原始报错信息(若有,可粘贴;若无,说明 “代码运行时出现 XX 问题,如无输出、结果错误”);② 错误分析(分点说明每个错误的位置和原因,100 字以内);③ 修复后代码;④ 修复思路(说明每个错误是如何修复的,为什么这么修复,100 字以内)。
待优化代码:
[粘贴需要优化的代码]
原始报错信息(可选):
[粘贴报错信息,如 “NameError: name 'x' is not defined”]”
2.3 场景案例:性能优化(Python 代码)
2.3.1 待优化代码(计算 1-10000 内偶数的平方和)
# 计算1-10000内偶数的平方和
total = 0
for i in range(1, 10001):
if i % 2 == 0:
square = i * i
total = total + square
print(total)
问题:用普通 for 循环遍历 1-10000 个数字,再判断是否为偶数,存在冗余循环和判断,运行效率较低。
2.3.2 提示词示例
“请优化以下 Python 代码,优化维度为性能,具体要求:
- 分析当前代码的性能瓶颈;
- 针对瓶颈进行优化,优先使用 “列表推导式” 或 “内置函数(如 sum、filter)” 替代 for 循环;
- 输出内容包含:① 优化前代码;② 优化后代码;③ 性能瓶颈分析;④ 优化思路;⑤ 优化前后的运行时间对比(测试数据:处理 1-10000 内偶数的平方和)。
待优化代码:
计算 1-10000 内偶数的平方和
total = 0
for i in range(1, 10001):
if i % 2 == 0:
square = i * i
total = total + square
print(total)”
2.3.3 模型输出结果
- 优化前代码:
# 计算1-10000内偶数的平方和
total = 0
for i in range(1, 10001):
if i % 2 == 0:
square = i * i
total = total + square
print(total)
- 优化后代码:
# 计算1-10000内偶数的平方和
total = sum(i * i for i in range(2, 10001, 2)) # 直接生成偶数序列,用生成器表达式计算平方和
print(total)
- 性能瓶颈分析:
当前代码用 for 循环遍历 1-10000 个数字,再通过 if 判断筛选偶数,存在 “遍历多余奇数” 和 “手动累加计算” 的冗余操作,增加了运行时间。
- 优化思路:
用 range (2, 10001, 2) 直接生成 1-10000 内的偶数序列(步长为 2,从 2 开始),减少 “筛选奇数” 的判断;用 sum () 内置函数替代手动累加,sum () 是 C 语言实现的内置函数,运行速度比 Python 手动循环更快。
- 运行时间对比:
- 优化前:遍历 10000 个数字 + 10000 次判断 + 5000 次累加,估算运行时间约 0.002 秒;
- 优化后:生成 5000 个偶数 + 1 次 sum () 计算,估算运行时间约 0.0005 秒,效率提升约 4 倍。
2.3.4 新手操作建议
优化后,新手可通过 Python 的 time 模块验证实际运行时间:
import time
# 测试优化前代码
start1 = time.time()
total1 = 0
for i in range(1, 10001):
if i % 2 == 0:
total1 = total1 + i * i
end1 = time.time()
print(f"优化前运行时间:{end1 - start1:.6f}秒")
# 测试优化后代码
start2 = time.time()
total2 = sum(i * i for i in range(2, 10001, 2))
end2 = time.time()
print(f"优化后运行时间:{end2 - start2:.6f}秒")
通过实际测试,能更直观看到优化效果,同时理解 “内置函数比手动循环高效” 的原因。
三、实用技巧二:补充 “上下文信息”,让提示词更精准
3.1 核心逻辑
新手优化代码时,常只粘贴代码却不提供 “上下文信息”(如代码用途、运行环境、输入输出要求),导致模型误解代码的实际场景,优化后的代码虽 “看似优化”,却不符合实际使用需求。补充 “上下文信息”,就是在提示词中告诉模型 “代码是做什么的”“在什么环境下运行”“有什么特殊约束”,让模型的优化贴合实际场景。
比如一段 “处理 Excel 数据的 Python 代码”,若不说明 “Excel 文件的格式(如.xlsx/.csv)”“数据量大小(如 100 行 / 10 万行)”,模型可能优化为 “只适合小数据量的方法”,导致处理 10 万行数据时仍效率低下。
3.2 必补充的上下文信息类型
3.2.1 信息 1:代码用途(核心功能)
说明代码的核心目标,让模型知道 “优化不能改变代码的原始功能”。比如 “这段代码用于从 MySQL 数据库中查询用户订单数据,计算每个用户的月度消费总额”“这段代码用于读取本地 CSV 文件,筛选出年龄大于 18 岁的用户信息并保存到新文件”。
3.2.2 信息 2:运行环境(约束条件)
说明代码的运行环境和约束,如 “运行在 Python 3.8 环境,不能使用 Python 3.9 及以上的新语法”“运行在嵌入式设备中,内存有限,优化时需控制内存占用”“依赖的第三方库:只能使用 pandas,不能使用 numpy(项目已固定依赖)”。
3.2.3 信息 3:输入输出要求(数据特征)
说明代码的输入数据特征(如数据量、格式)和输出要求(如输出格式、精度),如 “输入数据是 10 万行的 CSV 文件,每行包含‘用户 ID、消费金额、消费时间’3 列”“输出结果需要保留 2 位小数,且按‘用户 ID’升序排序”“输入的字符串可能包含中文和特殊字符(如‘#、@’),优化时需确保字符处理正确”。
3.3 提示词模板(含上下文信息)
以 “优化 Python 数据处理代码” 为例,模板如下:
“请优化以下 Python 代码,具体要求:
- 优化维度:[选择维度,如 “性能”“可读性”];
- 上下文信息:
① 代码用途:从本地 CSV 文件(包含 “用户 ID、商品 ID、购买数量、单价、购买时间”5 列)中,计算每个商品的总销量(购买数量之和),并将结果保存到新的 CSV 文件;
② 运行环境:Python 3.7,依赖库只能使用 pandas(版本 1.3.5),不能使用其他库;
③ 输入输出要求:输入 CSV 文件约 10 万行数据,输出 CSV 文件需包含 “商品 ID、总销量”2 列,且按 “总销量” 降序排序;
- 输出内容:① 优化前代码;② 优化后代码;③ 优化思路(说明如何结合上下文信息进行优化);④ 验证方法(如何验证优化后的代码功能与原代码一致)。
待优化代码:
[粘贴需要优化的代码]”
3.4 场景案例:含上下文的可读性优化(Python 代码)
3.4.1 待优化代码(处理 CSV 数据)
import pandas as pd
def f(d):
d1 = d.groupby('商品ID')['购买数量'].sum()
d2 = d1.reset_index()
d2.columns = ['a', 'b']
d2 = d2.sort_values('b', ascending=False)
d2.to_csv('r.csv', index=False)
return d2
df = pd.read_csv('s.csv')
result = f(df)
print(result.head())
问题:函数命名 “f ()”、变量命名 “d/d1/d2/a/b” 无意义,无注释,代码格式混乱,且未说明上下文,模型若误判 “数据量小”,优化可能不贴合 10 万行数据场景。
3.4.2 提示词示例
“请优化以下 Python 代码,具体要求:
- 优化维度:可读性;
- 上下文信息:
① 代码用途:从本地 CSV 文件(s.csv,包含 “用户 ID、商品 ID、购买数量、单价、购买时间”5 列)中,计算每个商品的总销量(购买数量之和),并将结果保存到新的 CSV 文件(r.csv);
② 运行环境:Python 3.7,依赖库为 pandas 1.3.5,无需考虑性能(数据量 10 万行已满足当前需求);
③ 输入输出要求:输入 s.csv 约 10 万行,输出 r.csv 需包含 “商品 ID、总销量”2 列,按 “总销量” 降序排序,输出前 5 行结果;
- 输出内容:① 优化前代码;② 优化后代码;③ 优化思路;④ 验证方法。
待优化代码:
import pandas as pd
def f (d):
d1 = d.groupby (' 商品 ID')[' 购买数量 '].sum ()
d2 = d1.reset_index ()
d2.columns = ['a', 'b']
d2 = d2.sort_values ('b', ascending=False)
d2.to_csv ('r.csv', index=False)
return d2
df = pd.read_csv('s.csv')
result = f(df)
print(result.head())”
3.4.3 模型输出结果
- 优化前代码:
import pandas as pd
def f(d):
d1 = d.groupby('商品ID')['购买数量'].sum()
d2 = d1.reset_index()
d2.columns = ['a', 'b']
d2 = d2.sort_values('b', ascending=False)
d2.to_csv('r.csv', index=False)
return d2
df = pd.read_csv('s.csv')
result = f(df)
print(result.head())
- 优化后代码:
import pandas as pd
def calculate_product_total_sales(input_df):
"""
计算每个商品的总销量,并将结果保存到CSV文件
参数:
input_df (pd.DataFrame): 输入数据框,需包含"商品ID"和"购买数量"列(来自s.csv)
返回:
pd.DataFrame: 包含"商品ID"和"总销量"的结果数据框,按总销量降序排序
"""
# 按商品ID分组,计算每个商品的购买数量之和(即总销量)
product_sales = input_df.groupby('商品ID')['购买数量'].sum()
# 将Series转换为DataFrame,重置索引(让商品ID从索引变为列)
product_sales_df = product_sales.reset_index()
# 重命名列:确保列名见名知意
product_sales_df.columns = ['商品ID', '总销量']
# 按总销量降序排序(满足输出要求)
sorted_sales_df = product_sales_df.sort_values('总销量', ascending=False)
# 保存结果到CSV文件(输出文件名为r.csv,不保留索引列)
sorted_sales_df.to_csv('r.csv', index=False)
return sorted_sales_df
# 读取输入CSV文件(s.csv)
input_dataframe = pd.read_csv('s.csv')
# 调用函数计算商品总销量
sales_result = calculate_product_total_sales(input_dataframe)
# 打印结果的前5行(验证输出格式)
print("商品总销量前5名:")
print(sales_result.head())
- 优化思路:
① 命名优化:将无意义的 “f ()” 改为 “calculate_product_total_sales ()”(体现函数功能),“d/d1/d2” 改为 “input_df/product_sales/product_sales_df”(体现数据含义),“a/b” 改为 “商品 ID / 总销量”(与业务含义一致);
② 注释补充:函数上方添加 “功能 + 参数 + 返回值” 注释,复杂逻辑处添加行注释(如分组计算、列重命名),说明 “为什么这么做”;
③ 格式调整:按 Python PEP 8 规范调整缩进(4 个空格)、换行(运算符前后空格),添加打印说明(如 “商品总销量前 5 名:”),提升可读性;
④ 贴合上下文:保留 pandas 依赖,未引入其他库,确保符合 “Python 3.7+ pandas 1.3.5” 的环境要求,输出格式与 “商品 ID、总销量” 的要求一致。
- 验证方法:
① 功能验证:分别运行优化前和优化后代码,对比输出的 “r.csv” 文件内容(如商品 ID 对应的总销量是否一致)、打印的前 5 行结果是否相同,确保功能未改变;
② 可读性验证:让其他新手同事阅读两段代码,判断优化后代码是否能更快理解 “代码做什么、每个步骤的作用”。
四、实用技巧三:添加 “示例引导”,让提示词对齐预期
4.1 核心逻辑
新手对 “优化效果” 有预期(如希望代码用特定语法、特定结构),但只用文字描述难以让模型精准对齐预期。添加 “示例引导”,就是在提示词中给出 “符合预期的优化示例”(如优化后的代码片段、命名风格示例),让模型参考示例进行优化,确保结果符合新手的具体要求。
比如新手希望将 “for 循环优化为列表推导式”,但不确定如何描述,就可以在提示词中给出示例:“优化示例:将‘for i in range (5): list.append (i)’优化为‘list = [i for i in range (5)]’”,模型会参考示例的优化方式处理目标代码。
4.2 示例引导的两种常见形式
4.2.1 形式 1:优化方式示例(告诉模型 “用什么方法优化”)
适用于新手知道 “要用到的优化方法”,但不确定如何让模型应用该方法的场景。比如 “用 lambda 函数替代简单的 def 函数”“用 try-except 捕获特定异常”,可给出方法示例。
示例模板:
“优化方式示例:
- 原代码(简单函数):def add (a, b): return a + b
- 优化后(lambda 函数):add = lambda a, b: a + b
请参考以上示例,将待优化代码中的简单函数(只有 1 行返回值)优化为 lambda 函数,其他部分保持功能不变。”
4.2.2 形式 2:输出格式示例(告诉模型 “优化后是什么样”)
适用于新手对 “优化后的代码格式、风格” 有明确要求,比如 “注释格式为‘# 功能:XXX’”“变量命名为‘小写 + 下划线’风格”,可给出格式示例。
示例模板:
“输出格式示例:
- 注释格式:# 功能:读取 CSV 文件,参数为文件路径
- 变量命名:user_info、order_total、calculate_price(小写 + 下划线)
- 代码缩进:每个层级缩进 4 个空格,函数内代码与 def 行缩进一致
请参考以上示例,优化待优化代码的格式和命名,确保符合示例风格。”
4.3 提示词模板(含示例引导)
以 “优化 Java 代码的异常处理” 为例,模板如下:
“请优化以下 Java 代码,具体要求:
- 优化维度:语法纠错 + 可读性(添加异常处理,避免运行报错);
- 上下文信息:代码用途是读取本地 txt 文件(路径为 “D:/test.txt”),输出文件内容;运行环境为 Java 8;
- 示例引导(异常处理示例):
原代码(无异常处理):
FileReader fr = new FileReader ("test.txt");
BufferedReader br = new BufferedReader (fr);
String line = br.readLine ();
优化后(含异常处理):
try (FileReader fr = new FileReader ("test.txt");
BufferedReader br = new BufferedReader (fr)) {
String line = br.readLine ();
while (line != null) {
System.out.println (line);
line = br.readLine ();
}
} catch (FileNotFoundException e) {
System.out.println ("文件未找到:" + e.getMessage ());
} catch (IOException e) {
System.out.println ("文件读取错误:" + e.getMessage ());
}
- 输出内容:① 优化前代码;② 优化后代码;③ 优化说明(对比示例,说明如何参考示例进行异常处理)。
待优化代码:
[粘贴需要优化的 Java 代码]”
4.4 场景案例:示例引导的语法纠错优化(Java 代码)
4.4.1 待优化代码(读取 txt 文件,无异常处理)
import java.io.FileReader;
import java.io.BufferedReader;
public class ReadFile {
public static void main(String[] args) {
FileReader fr = new FileReader("D:/test.txt");
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();
while (line != null) {
System.out.println(line);
line = br.readLine();
}
br.close();
fr.close();
}
}
问题:无异常处理(若文件不存在或读取错误,会直接报错崩溃),且未使用 Java 8 的 try-with-resources 语法(可能导致流未关闭,占用资源)。
4.4.2 提示词示例
“请优化以下 Java 代码,具体要求:
- 优化维度:语法纠错 + 可读性(添加异常处理,确保文件流正确关闭);
- 上下文信息:代码用途是读取本地 txt 文件(路径 “D:/test.txt”)并打印内容;运行环境为 Java 8;
- 示例引导(异常处理 + try-with-resources 示例):
原代码(无异常处理):
FileReader fr = new FileReader ("test.txt");
BufferedReader br = new BufferedReader (fr);
String line = br.readLine ();
优化后(含异常处理):
try (FileReader fr = new FileReader ("test.txt");
BufferedReader br = new BufferedReader (fr)) {
String line = br.readLine ();
while (line != null) {
System.out.println (line);
line = br.readLine ();
}
} catch (FileNotFoundException e) {
System.out.println ("文件未找到:" + e.getMessage ());
} catch (IOException e) {
System.out.println ("文件读取错误:" + e.getMessage ());
}
- 输出内容:① 优化前代码;② 优化后代码;③ 优化说明。
待优化代码:
import java.io.FileReader;
import java.io.BufferedReader;
public class ReadFile {
public static void main(String[] args) {
FileReader fr = new FileReader("D:/test.txt");
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();
while (line != null) {
System.out.println(line);
line = br.readLine();
}
br.close();
fr.close();
}
}”
4.4.3 模型输出结果
- 优化前代码:
import java.io.FileReader;
import java.io.BufferedReader;
public class ReadFile {
public static void main(String[] args) {
FileReader fr = new FileReader("D:/test.txt");
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();
while (line != null) {
System.out.println(line);
line = br.readLine();
}
br.close();
fr.close();
}
}
- 优化后代码:
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException; // 导入所需异常类
public class ReadFile {
public static void main(String[] args) {
// 参考示例,使用try-with-resources语法(Java 8+),自动关闭文件流,无需手动close()
try (FileReader fr = new FileReader("D:/test.txt");
BufferedReader br = new BufferedReader(fr)) {
String line = br.readLine();
// 循环读取文件内容,直到读取到null(文件末尾)
while (line != null) {
System.out.println(line);
line = br.readLine(); // 读取下一行
}
} catch (FileNotFoundException e) {
// 捕获“文件未找到”异常,给出友好提示(参考示例格式)
System.out.println("文件未找到:" + e.getMessage());
} catch (IOException e) {
// 捕获“文件读取错误”异常(如权限不足、文件损坏)
System.out.println("文件读取错误:" + e.getMessage());
}
}
}
- 优化说明:
① 异常处理:参考示例,添加了 FileNotFoundException(文件未找到)和 IOException(读取错误)的捕获,避免代码直接崩溃,同时输出友好的错误提示,方便定位问题;
② 资源关闭:参考示例的 try-with-resources 语法,将 FileReader 和 BufferedReader 放在 try 后的括号中,Java 会自动在代码执行完后关闭文件流,解决了原代码 “手动 close () 可能未执行” 的问题(如中间报错导致 close () 被跳过);
③ 语法完善:导入了所需的异常类(FileNotFoundException、IOException),原代码缺少导入会导致编译报错,优化后确保代码能正常编译运行。
4.4.1 新手操作建议
优化后,新手可通过两种方式验证:
- 正常场景:在 D 盘创建 test.txt 文件,写入几行内容,运行代码,查看是否能正确打印内容;
- 异常场景:删除 D 盘的 test.txt 文件,运行代码,查看是否输出 “文件未找到” 的提示(而非报错崩溃),确保异常处理生效。
五、用提示词优化代码的常见问题及解决方法
5.1 问题一:模型优化后的代码功能改变
5.1.1 问题表现
优化后的代码与原代码功能不一致,比如原代码 “计算 1-10 的偶数和”,优化后代码 “计算 1-10 的奇数和”,或原代码 “保存数据到 CSV”,优化后代码 “保存数据到 TXT”。
5.1.2 错误原因
- 提示词未明确 “保留原功能”,模型为了优化可能简化或修改了核心逻辑;
- 未提供 “原代码功能说明”,模型误解了代码的核心目标(如把 “筛选偶数” 误解为 “筛选奇数”);
- 示例引导中的示例与原功能冲突,模型参考示例时偏离了原目标。
5.1.3 解决方法
- 提示词中强制要求 “保留原功能”:在提示词开头添加 “优化时必须保证代码功能与原代码完全一致,不得改变核心逻辑(如计算逻辑、输入输出目标)”;
- 详细说明原代码功能:在上下文信息中添加 “原代码核心功能:XXX”,如 “原代码核心功能:计算 1-100 内所有偶数的和,输出结果为整数”;
- 检查示例与原功能的一致性:确保示例引导中的示例与原代码功能相关,不冲突,比如原代码是 “CSV 数据处理”,示例不要用 “TXT 数据处理” 的例子。
5.2 问题二:模型优化过度,代码复杂度增加
5.2.1 问题表现
模型为了追求 “极致优化”,将简单代码改为复杂代码,比如原代码 “用 for 循环计算求和”(新手能理解),优化后代码 “用复杂的递归 + lambda 函数计算求和”(新手无法理解,且没必要),或原代码处理 100 行数据,优化后代码添加了 “分布式处理” 的复杂逻辑(过度优化)。
5.2.2 错误原因
- 提示词未明确 “优化程度”,模型默认按 “最高标准” 优化,忽略了新手的理解能力和实际需求;
- 未说明 “代码的使用场景”(如数据量、维护人员),模型不知道 “代码只需满足简单场景”。
5.2.3 解决方法
- 提示词中明确 “优化程度”:添加 “优化后的代码需符合新手理解能力,避免使用复杂语法(如递归、高级设计模式)和冗余逻辑,以‘简洁、易懂’为优先,而非‘极致性能’”;
- 说明使用场景的约束:在上下文信息中添加 “使用场景:处理 100 行以内的小数据量,维护人员为编程新手,代码需易于理解和修改”,让模型根据场景调整优化程度;
- 限制优化方法:在提示词中指定 “只能使用 XXX 优化方法”,如 “只能使用列表推导式优化 for 循环,不得使用递归、多线程等复杂方法”。
5.3 问题三:模型无法优化特定类型代码
5.3.1 问题表现
对于某些特定代码(如小众编程语言代码、包含特殊业务逻辑的代码),模型无法给出有效优化,比如输出 “无法识别该编程语言”“无法理解业务逻辑,无法优化”,或优化结果只是简单格式调整,无实质优化。
5.3.2 错误原因
- 模型对小众编程语言(如 Rust、Go 以外的冷门语言)的支持不足,训练数据少,无法理解语法和优化技巧;
- 代码包含特殊业务逻辑(如公司内部的加密算法、自定义数据格式处理),提示词未提供业务逻辑说明,模型无法理解代码含义,无法优化;
- 提示词中的代码格式混乱(如缩进错误、语法错误过多),模型无法正确解析代码,自然无法优化。
5.3.3 解决方法
- 选择支持目标语言的模型:先确认模型支持的编程语言(如 GPT-4 支持 Python、Java、C++ 等主流语言,CodeLlama 对代码的支持更专业),小众语言优先使用专门的代码模型;
- 补充特殊业务逻辑说明:在上下文信息中添加 “业务逻辑说明:XXX”,如 “业务逻辑:这段代码是公司内部的用户密码加密逻辑,其中‘encrypt ()’函数是自定义加密函数,优化时不得修改该函数,只需优化调用逻辑”;
- 先修复代码基础错误:若原代码存在语法错误或格式混乱,先让模型 “先修复语法错误和格式”,再进行优化,可使用 “语法纠错优化” 的提示词模板,修复后再用其他优化技巧。
5.4 问题四:优化后的代码存在潜在 bug
5.4.1 问题表现
优化后的代码能运行,但存在潜在问题,比如原代码 “处理字符串时区分大小写”,优化后代码 “不区分大小写”(导致数据错误),或优化后的代码在特定输入下报错(如输入为空时崩溃),但模型未发现。
5.4.2 错误原因
- 提示词未要求 “验证优化后的代码”,模型只关注 “优化”,未考虑边界场景(如空输入、异常数据);
- 未提供 “测试数据”,模型无法模拟实际输入验证代码是否存在 bug;
- 模型自身的局限性:对于复杂的边界场景,模型可能无法完全覆盖,导致遗漏潜在 bug。
5.4.3 解决方法
- 提示词要求模型 “验证代码”:添加 “优化后需提供‘测试方案’,包括至少 3 种测试场景(正常输入、边界输入如空数据、异常输入如错误格式),并说明每种场景的预期输出,确保代码在所有场景下无 bug”;
- 提供具体测试数据:在提示词中添加 “测试数据:① 正常输入:XXX;② 边界输入:XXX;③ 异常输入:XXX”,如 “测试数据:① 正常输入:[1,2,3,4];② 边界输入:[](空列表);③ 异常输入:[1,'a',3](包含非数字)”;
- 新手手动验证:优化后,新手需用测试数据实际运行代码,检查是否存在 bug,尤其是模型未覆盖的场景,不要完全依赖模型的优化结果。
六、用提示词优化代码的工具推荐
6.1 提示词生成工具(快速生成优化提示词)
6.1.1 豆包提示词生成器
- 特点:支持 “代码优化提示词” 专项生成,新手只需输入 “编程语言(如 Python/Java)”“优化维度(性能 / 可读性 / 纠错)”“上下文信息(代码用途、运行环境)”,工具会自动生成包含 “维度要求、上下文、输出格式” 的完整提示词;生成的提示词语言简单,符合大模型理解习惯,无需手动梳理结构。
- 适用人群:新手,适合快速生成符合要求的优化提示词,节省时间。
- 使用步骤:1. 打开豆包提示词生成器,选择 “代码优化” 分类;2. 输入编程语言(如 “Python”);3. 选择优化维度(如 “性能优化”);4. 填写上下文信息(代码用途:“计算偶数和”,运行环境:“Python 3.8”);5. 点击 “生成”,工具生成提示词;6. 复制提示词,粘贴到大模型中,补充待优化代码即可。
6.1.2 PromptBase(代码优化提示词模板)
- 特点:包含大量 “代码优化提示词” 模板,覆盖 Python、Java、C++ 等主流语言,每个模板都针对特定优化场景(如 “Python 列表推导式优化”“Java 异常处理优化”“代码可读性规范优化”);模板中已包含 “维度要求、上下文示例、输出格式”,新手只需替换 “待优化代码” 和 “具体上下文” 即可使用。
- 适用人群:所有用户,适合快速找到对应语言和场景的模板,避免从零开始写提示词。
- 使用步骤:1. 打开 PromptBase 官网,搜索 “代码优化”+ 编程语言(如 “Python code optimization”);2. 浏览模板,选择与需求匹配的(如 “Python Performance Optimization Prompt”);3. 查看模板内容,替换模板中的 “[待优化代码]”“[上下文信息]” 为自己的内容;4. 将修改后的提示词输入大模型,生成优化结果。
6.2 代码优化大模型推荐
6.2.1 CodeLlama(Meta 推出,代码专用模型)
- 特点:专门针对代码处理优化的大模型,支持 Python、Java、C++、JavaScript 等多种主流编程语言;对代码的理解和优化能力强,尤其擅长 “性能优化”“语法纠错”“代码补全”;支持生成详细的优化思路和注释,适合新手学习;开源版本可本地部署,适合对数据隐私有要求的场景。
- 适用人群:新手,尤其是需要频繁处理代码优化的用户。
- 使用方式:1. 在线使用:通过 Hugging Face、Replicate 等平台在线调用;2. 本地部署:下载开源模型(如 CodeLlama-7B-Code),使用 PyTorch 或 TensorFlow 框架部署,适合有一定环境配置能力的新手;3. 提示词适配:使用本文中的提示词模板,无需额外调整,模型能准确理解 “优化维度、上下文信息”。
6.2.2 GPT-4(通用大模型,代码优化能力强)
- 特点:通用大模型中代码处理能力顶尖,能理解复杂代码逻辑,支持多语言代码优化;擅长 “结合上下文信息优化”,比如根据 “数据量、运行环境” 调整优化策略;能生成详细的优化说明和验证方法,帮助新手理解优化思路;支持多轮交互,若优化结果不符合预期,可通过追问调整(如 “再优化一下,不要用递归”)。
- 适用人群:所有用户,适合处理复杂代码优化(如多语言混合代码、包含业务逻辑的代码)。
- 使用方式:1. 在线使用:通过 ChatGPT 官网或 API 调用;2. 提示词使用:直接输入本文中的提示词模板,补充待优化代码和上下文信息;3. 多轮优化:若第一次优化结果不佳,追问 “请修改优化方式,要求:1. 保留原功能;2. 不使用 XXX 语法;3. 补充注释”,模型会根据追问调整。
6.2.3 通义千问(阿里推出,中文提示词适配好)
- 特点:对中文提示词的理解能力强,适合新手用中文撰写提示词(如 “优化这段 Python 代码,提升可读性”);支持主流编程语言,优化结果符合中文开发者的编码习惯(如注释用中文,命名符合中文业务场景);提供 “代码解释” 功能,能详细说明优化后的代码每一步的作用,帮助新手理解。
- 适用人群:中文新手用户,适合用中文沟通和理解优化过程。
- 使用方式:1. 在线使用:通过通义千问官网或 APP;2. 提示词使用:直接用中文输入提示词,如 “请优化以下 Python 代码,要求:1. 提升运行效率;2. 代码用途是处理 10 万行 CSV 数据;3. 输出优化前后的代码和思路”;3. 代码解释:生成优化结果后,可追问 “请解释优化后代码的每一步作用”,模型会用中文详细说明。
6.3 代码验证工具(验证优化后代码的正确性)
6.3.1 在线代码运行平台(如 JDoodle、OnlineGDB)
- 特点:支持多编程语言在线运行代码,无需本地配置环境;能快速运行优化前后的代码,对比输出结果是否一致;支持输入测试数据,验证代码在不同场景下的运行情况;部分平台(如 JDoodle)支持代码语法检查,能提前发现语法错误。
- 适用人群:所有新手,适合快速验证代码功能和语法正确性。
- 使用步骤:1. 打开平台(如 JDoodle),选择目标编程语言(如 Python);2. 粘贴优化前代码,输入测试数据,点击 “Run”,记录输出结果;3. 粘贴优化后代码,输入相同测试数据,点击 “Run”,对比两次输出结果是否一致;4. 若不一致,返回大模型调整提示词,重新优化。
6.3.2 代码质量检查工具(如 SonarLint、Pylint)
- 特点:专门检查代码质量,包括 “可读性(命名、注释)”“性能(冗余代码、低效算法)”“语法规范(缩进、空格)”;能生成详细的质量报告,指出优化后的代码是否仍存在问题(如 “变量命名不规范”“存在未使用的变量”);支持集成到本地 IDE(如 VS Code、PyCharm),实时检查代码质量。
- 适用人群:需要提升代码质量的新手,适合验证优化后的代码是否符合行业规范。
- 使用步骤:1. 安装工具(如在 VS Code 中安装 Pylint 插件);2. 打开优化后的代码文件;3. 工具自动运行检查,在代码旁标注问题(如红色波浪线表示错误,黄色波浪线表示警告);4. 根据工具提示,手动调整代码(如修改变量命名、补充注释),进一步优化代码质量。
七、实际应用拓展:不同场景下的提示词优化案例
7.1 场景一:Python 数据分析代码优化(性能 + 可读性)
7.1.1 需求背景
新手用 pandas 处理 10 万行用户消费数据(CSV 文件),代码运行慢且可读性差,需要优化性能(减少运行时间)和可读性(添加注释、规范命名)。
7.1.2 待优化代码
import pandas as pd
def f1(df):
df1 = df[df['消费金额'] > 100]
df2 = df1.groupby('用户ID')['消费金额'].sum()
df3 = df2.reset_index()
df3.columns = ['u', 'm']
df4 = df3.sort_values('m', ascending=False)
return df4
df = pd.read_csv('user_data.csv')
r = f1(df)
print(r.head(10))
7.1.3 提示词示例
“请优化以下 Python 代码,具体要求:
- 优化维度:性能 + 可读性;
- 上下文信息:
① 代码用途:读取 10 万行用户消费数据(user_data.csv,含 “用户 ID、消费金额、消费时间”3 列),筛选出消费金额 > 100 的记录,计算每个用户的总消费金额,按总消费金额降序排序,输出前 10 名用户;
② 运行环境:Python 3.9,pandas 2.0.3,无其他依赖库限制;
③ 输入输出要求:输入 CSV 文件 10 万行,输出前 10 名用户的 “用户 ID、总消费金额”;
- 输出内容:① 优化前代码;② 优化后代码;③ 性能优化点 + 可读性优化点(分点说明);④ 运行时间对比(估算 10 万行数据的运行时间)。
待优化代码:
import pandas as pd
def f1 (df):
df1 = df [df [' 消费金额 '] > 100]
df2 = df1.groupby (' 用户 ID')[' 消费金额 '].sum ()
df3 = df2.reset_index ()
df3.columns = ['u', 'm']
df4 = df3.sort_values ('m', ascending=False)
return df4
df = pd.read_csv('user_data.csv')
r = f1(df)
print(r.head(10))”
7.1.4 模型输出结果(核心部分)
优化后代码:
import pandas as pd
def calculate_high_spend_user_total(df):
"""
筛选高消费用户并计算总消费金额
参数:
df (pd.DataFrame): 输入用户消费数据框,需包含"用户ID"和"消费金额"列
返回:
pd.DataFrame: 消费金额>100的用户总消费数据,按总消费金额降序排序,含"用户ID、总消费金额"列
"""
# 性能优化:合并筛选和分组计算,减少中间DataFrame创建(原代码创建4个DataFrame,现减少为2个)
# 1. 筛选消费金额>100的记录,同时保留需要的列(减少数据量)
high_spend_df = df[df['消费金额'] > 100][['用户ID', '消费金额']]
# 2. 按用户ID分组计算总消费金额,并重命名列(见名知意)
user_total_spend = high_spend_df.groupby('用户ID', as_index=False)['消费金额'].sum()
user_total_spend.columns = ['用户ID', '总消费金额']
# 3. 按总消费金额降序排序,性能优化:sort_values默认已优化,无需额外调整
sorted_user_spend = user_total_spend.sort_values('总消费金额', ascending=False)
return sorted_user_spend
# 读取用户消费数据,性能优化:指定dtype减少内存占用(若已知列类型)
user_consume_df = pd.read_csv('user_data.csv', dtype={'用户ID': str, '消费金额': float})
# 计算高消费用户总金额
high_spend_result = calculate_high_spend_user_total(user_consume_df)
# 输出前10名用户,添加说明提升可读性
print("消费金额>100的用户总消费TOP10:")
print(high_spend_result.head(10))
优化点说明:
- 性能优化:① 合并筛选和列选择(df [df [' 消费金额 ']>100][[' 用户 ID',' 消费金额 ']]),减少中间 DataFrame 创建;② 读取 CSV 时指定 dtype,减少内存占用;
- 可读性优化:① 函数 / 变量命名见名知意;② 补充函数注释和行注释;③ 打印时添加说明文字。
7.2 场景二:Java 后端接口代码优化(可读性 + 异常处理)
7.2.1 需求背景
新手编写 Java 后端接口代码(查询用户信息),代码无异常处理(如数据库连接失败、用户不存在),命名不规范,需要优化可读性和稳定性。
7.2.2 待优化代码
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
public class UserDAO {
public static void getU(String id) {
Connection c = null;
Statement s = null;
ResultSet r = null;
try {
Class.forName("com.mysql.cj.jdbc.Driver");
c = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456");
s = c.createStatement();
String sql = "select * from user where user_id=" + id;
r = s.executeQuery(sql);
while (r.next()) {
System.out.println("用户ID:" + r.getString("user_id") + ",姓名:" + r.getString("user_name"));
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
if (r != null) r.close();
if (s != null) s.close();
if (c != null) c.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) {
getU("1");
}
}
7.2.3 提示词示例
“请优化以下 Java 代码,具体要求:
- 优化维度:可读性 + 异常处理;
- 上下文信息:
① 代码用途:Java 后端 DAO 层代码,通过用户 ID 从 MySQL 数据库(test 库 user 表)查询用户信息(user_id、user_name)并打印;
② 运行环境:Java 8,MySQL 8.0,依赖 mysql-connector-java 8.0.30;
③ 异常场景:可能出现 “数据库连接失败”“SQL 语法错误”“用户 ID 不存在”“结果集为空” 等场景;
- 输出内容:① 优化前代码;② 优化后代码;③ 优化说明(可读性优化点 + 异常处理优化点)。
待优化代码:
[粘贴上述 Java 代码]”
7.2.4 模型输出结果(核心部分)
优化后代码:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.SQLException;
import java.sql.ClassNotFoundException;
/**
* 用户数据访问对象(DAO):负责从MySQL数据库查询用户信息
*/
public class UserDAO {
// 数据库连接常量:避免硬编码,提升可维护性
private static final String DB_URL = "jdbc:mysql://localhost:3306/test";
private static final String DB_USER = "root";
private static final String DB_PASSWORD = "123456";
private static final String DRIVER_CLASS = "com.mysql.cj.jdbc.Driver";
/**
* 根据用户ID查询用户信息并打印
* @param userId 用户ID(字符串类型,避免SQL注入风险)
* @throws ClassNotFoundException 驱动类未找到异常(如依赖缺失)
* @throws SQLException SQL异常(如连接失败、语法错误、查询失败)
*/
public static void getUserInfoById(String userId) throws ClassNotFoundException, SQLException {
// 资源声明:使用try-with-resources语法,自动关闭连接、Statement、ResultSet
try (Connection conn = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);
Statement stmt = conn.createStatement()) {
// 1. 加载数据库驱动
Class.forName(DRIVER_CLASS);
// 2. 构建SQL(优化:避免字符串拼接,减少SQL注入风险,此处简化处理,实际建议用PreparedStatement)
String sql = String.format("select user_id, user_name from user where user_id = '%s'", userId);
// 3. 执行查询
try (ResultSet rs = stmt.executeQuery(sql)) {
// 检查结果集是否为空(处理“用户ID不存在”场景)
if (!rs.next()) {
System.out.println("查询结果:未找到用户ID为【" + userId + "】的用户");
return;
}
// 遍历结果集(若有多个用户,此处假设user_id唯一)
do {
String userIdFromDb = rs.getString("user_id");
String userNameFromDb = rs.getString("user_name");
System.out.println("查询结果:用户ID=" + userIdFromDb + ",用户姓名=" + userNameFromDb);
} while (rs.next());
}
} catch (ClassNotFoundException e) {
System.err.println("数据库驱动加载失败:" + e.getMessage() + ",请检查mysql-connector依赖是否正确");
throw e; // 抛出异常,让调用者处理
} catch (SQLException e) {
// 区分不同SQL异常场景,给出具体提示
if (e.getSQLState().startsWith("08")) {
System.err.println("数据库连接失败:" + e.getMessage() + ",请检查URL、用户名、密码是否正确");
} else if (e.getSQLState().startsWith("42")) {
System.err.println("SQL语法错误:" + e.getMessage() + ",SQL语句:" + sql);
} else {
System.err.println("查询用户信息失败:" + e.getMessage());
}
throw e;
}
}
public static void main(String[] args) {
try {
// 测试查询:存在的用户ID
getUserInfoById("1");
// 测试查询:不存在的用户ID
getUserInfoById("999");
} catch (ClassNotFoundException | SQLException e) {
System.err.println("程序执行失败:" + e.getMessage());
}
}
}
优化说明:
- 可读性优化:① 类 / 方法 / 变量命名规范(UserDAO、getUserInfoById、DB_URL);② 补充类注释和方法注释;③ 提取数据库常量,避免硬编码;
- 异常处理优化:① 细分异常场景(驱动加载失败、连接失败、语法错误、用户不存在),给出具体提示;② 使用 try-with-resources 自动关闭资源;③ 处理结果集为空场景,避免无输出。
八、注意事项:新手用提示词优化代码的关键原则
8.1 始终验证优化后的代码
8.1.1 核心原则
不要完全信任模型的优化结果,必须手动验证代码的 “功能一致性” 和 “正确性”,尤其是涉及业务逻辑、数据处理、资金计算的代码(如订单金额计算、用户数据筛选)。
8.1.2 验证方法
- 功能验证:运行优化前后的代码,输入相同的测试数据,对比输出结果是否完全一致(如计算结果、生成的文件、打印的内容);
- 异常验证:测试边界场景(如空输入、错误输入、大数据量),确保优化后的代码能正确处理异常,不崩溃;
- 性能验证(若优化性能):用 time 模块(Python)或 System.currentTimeMillis ()(Java)计算运行时间,确认性能确实有提升,而非模型估算。
8.2 提示词不要过于复杂
8.2.1 核心原则
新手写提示词时,以 “简单、清晰” 为优先,避免在一个提示词中包含过多要求(如同时优化性能、可读性、兼容性、异常处理),导致模型无法兼顾,优化效果差。
8.2.2 实践建议
- 分步骤优化:先优化 “语法纠错”,确保代码能运行;再优化 “可读性”,让代码易懂;最后优化 “性能”,提升效率,分 3 次提示词完成,而非 1 次;
- 每次聚焦一个核心目标:每个提示词只包含 1 个优化维度(如 “本次只优化可读性,不考虑性能”),让模型集中资源处理一个目标。
8.3 结合自身学习,理解优化思路
8.3.1 核心原则
用提示词优化代码的同时,要理解 “模型为什么这么优化”,而不是 “直接复制使用优化后的代码”,否则无法提升自身编程能力,下次遇到类似问题仍需依赖模型。
8.3.2 学习方法
- 分析模型的优化思路:重点看模型输出的 “优化思路”“优化说明”,理解 “为什么用这种方法优化”(如 “为什么用列表推导式比 for 循环快”);
- 手动复现优化过程:尝试不看模型的优化结果,自己按优化思路手动修改代码,对比与模型结果的差异,找出自己的不足;
- 记录优化技巧:将常用的优化技巧(如 “用 sum () 替代手动累加”“try-with-resources 关闭资源”)记录到笔记中,定期复习,逐步内化为自己的知识。
8.4 尊重代码版权和安全性
8.4.1 核心原则
优化代码时,确保待优化代码的版权归属(如自己编写的代码、公司授权的代码),不优化他人无授权的代码;同时注意代码安全性,不将包含敏感信息(如数据库密码、用户隐私数据)的代码粘贴到公共大模型中。
8.4.2 安全建议
- 脱敏处理:若代码包含敏感信息,优化前先脱敏,如将 “数据库密码 = 123456” 改为 “数据库密码 =”,将 “用户手机号 = 13800138000” 改为 “用户手机号 =”;
- 选择安全模型:处理敏感代码时,优先使用本地部署的开源模型(如 CodeLlama),而非公共在线模型,避免敏感信息泄露;
- 确认版权:优化公司代码前,确认公司允许使用大模型辅助优化,不违反公司的代码管理规定。
九、不同编程语言的提示词优化差异
9.1 核心逻辑
不同编程语言的语法规则、优化方向、常用库不同,提示词若不结合语言特性,优化效果会大打折扣。比如 Python 侧重 “内置函数、列表推导式” 优化,Java 侧重 “异常处理、资源关闭” 优化,JavaScript 侧重 “异步逻辑、DOM 操作效率” 优化。因此,针对不同语言,需在提示词中调整 “优化方式” 和 “上下文信息”,贴合语言特性。
9.2 主流编程语言的提示词优化要点及示例
9.2.1 Python 语言
- 核心优化方向:性能(内置函数、生成器、pandas 优化)、可读性(PEP 8 规范、命名风格)、语法简洁(列表推导式、lambda 函数);
- 提示词要点:需说明 “是否使用第三方库(如 pandas、numpy)”“数据量大小”“Python 版本(如 3.7/3.10)”;
- 示例模板(pandas 数据处理优化):
-
“请优化以下 Python 代码(Python 3.9,依赖 pandas 2.0),优化维度为性能,上下文信息:
① 代码用途:处理 10 万行 CSV 数据(含 “用户 ID、消费时间、消费金额”),筛选出 2024 年的消费记录,计算每个用户的月均消费金额;
② 优化要求:优先使用 pandas 的向量化操作替代 for 循环,减少中间 DataFrame 创建;
③ 输出:优化前后代码、性能瓶颈分析、运行时间对比(测试数据:10 万行 CSV)。
待优化代码:
import pandas as pd
df = pd.read_csv ('user_spend.csv')
df [' 消费时间 '] = pd.to_datetime (df [' 消费时间 '])
2024_data = []
for index, row in df.iterrows ():
if row [' 消费时间 '].year == 2024:
2024_data.append (row)
2024_df = pd.DataFrame (2024_data)
user_monthly = 2024_df.groupby ([' 用户 ID', 2024_df [' 消费时间 '].dt.month])[' 消费金额 '].sum ()
user_avg = user_monthly.groupby (' 用户 ID').mean ()
print (user_avg.head ())”
9.2.2 Java 语言
- 核心优化方向:异常处理(try-with-resources、细分异常)、资源管理(流关闭、连接池)、代码规范(Google 编码规范、命名);
- 提示词要点:需说明 “Java 版本(如 8/11)”“依赖框架(如 Spring、JDBC)”“运行环境(如后端服务、Android)”;
- 示例模板(JDBC 查询优化):
-
“请优化以下 Java 代码(Java 8,依赖 mysql-connector 8.0),优化维度为可读性 + 异常处理,上下文信息:
① 代码用途:通过 JDBC 查询商品表(goods),根据商品 ID 获取商品名称和价格;
② 优化要求:按 Google 编码规范调整格式,用 try-with-resources 关闭资源,细分 SQL 异常场景;
③ 输出:优化前后代码、优化说明(可读性 + 异常处理点)。
待优化代码:
import java.sql.*;
public class GoodsDAO {
public static void getGoods (String id) {
Connection conn = null;
PreparedStatement pstmt = null;
ResultSet rs = null;
try {
Class.forName ("com.mysql.cj.jdbc.Driver");
conn = DriverManager.getConnection ("jdbc:mysql://localhost:3306/shop", "root", "123456");
String sql = "select name, price from goods where id=?";
pstmt = conn.prepareStatement(sql);
pstmt.setString(1, id);
rs = pstmt.executeQuery();
if (rs.next()) {
System.out.println(rs.getString(1) + "," + rs.getDouble(2));
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
if (rs != null) rs.close();
if (pstmt != null) pstmt.close();
if (conn != null) conn.close();
} catch (Exception e) {}
}
}
}”
9.2.3 JavaScript 语言
- 核心优化方向:异步逻辑(Promise、async/await 替代回调)、DOM 操作(减少重排重绘)、性能(数组方法替代 for 循环);
- 提示词要点:需说明 “运行环境(浏览器 / Node.js)”“是否依赖前端框架(如 Vue、React)”“异步场景(如接口请求、文件读取)”;
- 示例模板(异步接口请求优化):
-
“请优化以下 JavaScript 代码(浏览器环境,无框架),优化维度为可读性 + 性能,上下文信息:
① 代码用途:先请求用户接口(/api/user)获取用户 ID,再用用户 ID 请求订单接口(/api/orders?userId=XXX),展示订单列表;
② 优化要求:用 async/await 替代回调函数,添加请求异常处理(如接口报错、无数据),减少全局变量使用;
③ 输出:优化前后代码、优化思路(异步逻辑 + 异常处理)。
待优化代码:
let userId;
\(.get('/api/user', function(userData) { userId = userData.id; \).get ('/api/orders?userId=' + userId, function (orderData) {
if (orderData.length > 0) {
for (let i = 0; i < orderData.length; i++) {
console.log (orderData [i].id);
}
}
}, function (err) {
console.log (' 订单接口错了 ');
});
}, function (err) {
console.log (' 用户接口错了 ');
});”
9.3 新手操作建议
- 先明确编程语言特性:优化前简单了解目标语言的核心优化方向(如 Python 的向量化、Java 的资源管理),避免在提示词中提 “不符合语言特性” 的要求(如让 Java 用列表推导式);
- 参考语言官方规范:在提示词中引用官方规范(如 Python PEP 8、Java Google 规范),让模型优化更贴合行业标准;
- 测试语言兼容性:优化后确认代码在目标语言版本中能运行(如 Python 3.7 不支持某些 3.10 语法),避免因版本问题导致代码报错。
-
十、提示词优化代码的进阶场景
10.1 场景一:多语言混合代码优化(如 Python+Shell、Java+JavaScript)
10.1.1 需求背景
新手处理跨语言脚本(如 Python 调用 Shell 脚本执行命令,Java 后端调用 JavaScript 前端接口),代码逻辑混乱、交互效率低,需要优化代码结构和交互方式。
10.1.2 待优化代码(Python 调用 Shell 脚本)
import os
# 调用Shell脚本获取系统内存信息,再用Python处理数据
os.system("sh get_memory.sh > memory.txt")
f = open("memory.txt", "r")
content = f.read()
f.close()
lines = content.split('\n')
used_mem = 0
for line in lines:
if "Used" in line:
used_mem = line.split(':')[1].strip()
print("已用内存:" + used_mem)
问题:用文件(memory.txt)传递数据,效率低;无异常处理(Shell 脚本执行失败、文件不存在);代码结构混乱。
10.1.3 提示词示例
“请优化以下 Python+Shell 混合代码,具体要求:
- 优化维度:性能 + 可读性;
- 上下文信息:
-
① 代码用途:Python 调用 Shell 命令获取系统内存信息(无需单独 Shell 脚本),提取 “已用内存” 并打印,运行环境为 Linux+Python 3.8;
② 优化要求:用 subprocess 模块替代 os.system(避免生成中间文件),添加异常处理(命令执行失败、无内存数据),规范代码结构;
- 输出:优化前后代码、优化说明(性能提升点 + 可读性优化点)。
-
待优化代码:
[粘贴上述 Python 代码]”
10.1.4 模型输出结果(核心部分)
优化后代码:
import subprocess
from subprocess import CalledProcessError
def get_and_parse_system_memory():
"""
调用Shell命令获取Linux系统已用内存信息并解析
返回:str,已用内存(如"8GB");若失败返回空字符串
"""
try:
# 优化1:用subprocess.check_output直接获取Shell命令输出,避免生成中间文件(memory.txt)
# 执行free命令获取内存信息,-h参数显示人类可读格式
result = subprocess.check_output(
["free", "-h"], # Shell命令及参数
stderr=subprocess.STDOUT, # 捕获标准错误
text=True # 输出为字符串(无需解码)
)
# 优化2:结构化解析输出,避免冗余循环
lines = result.strip().split('\n')
for line in lines:
# 匹配"Mem:"开头的行(内存信息行)
if line.startswith("Mem:"):
# 拆分列(Mem: total used free shared buff/cache available)
mem_cols = line.split()
used_mem = mem_cols[2] # 第3列是已用内存
return used_mem
# 未找到内存数据时的异常
raise ValueError("未从Shell命令输出中找到内存信息")
except CalledProcessError as e:
# 处理Shell命令执行失败(如命令不存在、权限不足)
print(f"Shell命令执行失败:{e.output},返回码:{e.returncode}")
return ""
except ValueError as e:
print(f"数据解析失败:{str(e)}")
return ""
except Exception as e:
print(f"未知错误:{str(e)}")
return ""
# 主逻辑:调用函数并打印结果
if __name__ == "__main__":
used_memory = get_and_parse_system_memory()
if used_memory:
print(f"系统已用内存:{used_memory}")
else:
print("获取内存信息失败")
优化说明:
- 性能优化:用 subprocess.check_output 直接获取 Shell 输出,删除中间文件操作,减少 IO 开销;
- 可读性优化:函数封装逻辑,添加注释,结构化解析数据;
- 异常处理:捕获命令执行失败、数据解析失败等场景,确保代码稳定。
-
10.2 场景二:包含第三方框架的代码优化(如 Python Django、Java Spring Boot)
10.2.1 需求背景
新手用框架开发项目(如 Django 开发网站、Spring Boot 开发后端接口),代码未遵循框架规范(如 Django 的 ORM 使用、Spring 的依赖注入),导致性能低、扩展性差。
10.2.2 待优化代码(Django 视图函数,查询用户数据)
# Django视图函数:查询所有用户,筛选出年龄>18的用户并返回
from django.http import JsonResponse
from myapp.models import User
def get_adult_users(request):
users = User.objects.all() # 查询所有用户,数据量大时性能低
adult_users = []
for user in users:
if user.age > 18: # Python层面筛选,效率低
adult_users.append({
"id": user.id,
"name": user.name,
"age": user.age
})
return JsonResponse({"adult_users": adult_users})
问题:查询所有用户后在 Python 层面筛选(数据量大时性能低);无分页(10 万用户时返回数据过大);未处理请求异常(如数据库连接失败)。
10.2.3 提示词示例
“请优化以下 Django 视图函数代码(Django 4.2,Python 3.10),具体要求:
- 优化维度:性能 + 框架规范;
- 上下文信息:
-
① 代码用途:Django 视图函数,接收 GET 请求,查询 User 模型中年龄 > 18 的用户,返回 JSON 数据(支持分页,每页 10 条);
② 优化要求:用 Django ORM 的 filter 在数据库层面筛选(避免 Python 层面筛选),添加分页(Django Paginator),处理数据库异常;
- 输出:优化前后代码、优化说明(框架规范 + 性能优化)。
-
待优化代码:
[粘贴上述 Django 代码]”
10.2.4 模型输出结果(核心部分)
优化后代码:
from django.http import JsonResponse
from django.core.paginator import Paginator, EmptyPage
from django.db import DatabaseError
from myapp.models import User
def get_adult_users(request):
try:
# 优化1:遵循Django ORM规范,在数据库层面用filter筛选年龄>18的用户
# 避免查询所有用户(User.objects.all()),减少数据库查询数据量
adult_users_queryset = User.objects.filter(age__gt=18).only("id", "name", "age")
# 优化2:添加分页(每页10条),支持前端传page参数(默认第1页)
page_num = request.GET.get("page", 1)
paginator = Paginator(adult_users_queryset, 10) # 每页10条数据
try:
current_page_users = paginator.page(page_num)
except EmptyPage:
# 处理页码不存在的情况(如请求page=1000,实际只有5页)
current_page_users = paginator.page(paginator.num_pages)
# 转换为JSON格式数据
adult_users_data = [
{"id": user.id, "name": user.name, "age": user.age}
for user in current_page_users
]
# 返回分页信息和数据
response_data = {
"adult_users": adult_users_data,
"pagination": {
"total_users": paginator.count, # 总用户数
"total_pages": paginator.num_pages, # 总页数
"current_page": current_page_users.number, # 当前页码
"page_size": 10 # 每页条数
}
}
return JsonResponse(response_data, status=200)
except DatabaseError as e:
# 处理数据库异常(如连接失败、SQL错误)
return JsonResponse({"error": f"数据库查询失败:{str(e)}"}, status=500)
except Exception as e:
# 处理其他未知异常
return JsonResponse({"error": f"请求处理失败:{str(e)}"}, status=400)
优化说明:
- 框架规范:用 Django ORM 的 filter(数据库层面筛选)和 only(只查询需要的字段),遵循 Django 数据查询最佳实践;
- 性能优化:分页减少返回数据量,数据库层面筛选减少数据传输;
- 异常处理:捕获数据库异常和分页异常,返回标准 HTTP 状态码,符合接口开发规范。
-
十一、提示词优化代码的后续学习方向
11.1 学习提示词的精细化设计
11.1.1 核心目标
从 “能生成优化代码” 进阶到 “生成高质量、贴合需求的优化代码”,比如根据 “代码复杂度” 调整提示词细节(简单代码用简洁提示词,复杂代码用详细提示词)。
11.1.2 学习方法
- 分析优秀提示词模板:研究 PromptBase、GitHub 上的代码优化提示词模板,学习 “如何用最少的文字传递准确需求”;
- 尝试变量化提示词:将提示词中的固定内容(如编程语言、优化维度)设为变量,形成 “通用模板”,比如 “优化以下 {{语言}} 代码,优化维度为 {{维度}},上下文信息:{{信息}}”;
- 多轮交互优化:若一次优化不满足需求,学习用追问补充需求,如 “之前的优化忽略了分页,请补充 Django 分页功能,每页 20 条数据”。
-
11.2 结合代码优化理论,提升提示词针对性
11.2.1 核心目标
理解代码优化的底层理论(如时间复杂度、空间复杂度、数据库索引优化),让提示词中的 “优化要求” 更专业、更有针对性。
11.2.2 学习方法
- 入门基础理论:阅读《代码整洁之道》《算法图解》等书籍,了解 “可读性规范”“算法效率” 的基础概念;
- 针对性补充提示词:将理论融入提示词,如 “优化这段 SQL 查询代码,要求:1. 分析当前 SQL 的执行计划,添加合适的索引;2. 避免全表扫描(时间复杂度 O (n)),优化为索引查询(O (log n))”;
- 验证理论落地:优化后用代码质量工具(如 EXPLAIN 分析 SQL 执行计划)验证优化效果,理解 “理论如何通过代码落地”。
-
11.3 探索 AI 与代码优化的深度结合
11.3.1 核心目标
了解 AI 在代码优化中的高级应用(如 AI 生成单元测试、AI 检测潜在性能风险),拓展提示词的应用场景。
11.3.2 学习方向
- 提示词 + 单元测试:学习用提示词让模型为优化后的代码生成单元测试,如 “为优化后的 Django 视图函数生成单元测试,覆盖正常查询、分页、数据库异常 3 种场景”;
- 提示词 + 性能分析:让模型分析代码的性能风险,如 “分析这段 Java 代码的潜在性能风险(如内存泄漏、死锁),给出优化建议”;
- 尝试 AI 代码工具:使用 Copilot X、CodeGeeX 等 AI 代码工具,体验 “实时提示词优化”(边写代码边优化),学习工具的提示词交互逻辑。
-
11.4 新手实践建议
- 每周固定练习:每周选择 1-2 段自己写的代码,用本文的技巧写提示词优化,对比优化前后的差异;
- 记录优化案例:建立 “提示词 - 优化代码” 案例库,记录每次的提示词、优化结果、遇到的问题,定期复盘;
- 参与社区交流:在 CSDN、GitHub、Stack Overflow 的 AI 代码优化社区分享自己的案例,学习他人的提示词技巧。