【人工智能】新手指南:用提示词优化代码的3个实用技巧

新手指南:用提示词优化代码的 3 个实用技巧

在编程学习和开发过程中,新手常遇到代码运行效率低、可读性差、存在 bug 却难以定位的问题。借助大模型的代码处理能力,通过合理的提示词引导,能快速优化代码质量 —— 比如让冗余代码更简洁、让低效算法更高效、让混乱代码更易读。但很多新手不知道如何写提示词,导致大模型优化后的代码仍不符合预期。本文将聚焦新手需求,详细讲解用提示词优化代码的 3 个核心实用技巧,每个技巧都搭配具体场景案例、提示词模板和效果对比,帮助新手快速上手,用提示词轻松优化代码。

一、基础认知:为什么提示词能优化代码?

1.1 大模型的代码处理能力

目前主流大模型(如 GPT-4、Claude 3、CodeLlama)通过训练海量代码数据,具备了代码理解、语法纠错、逻辑优化、性能提升等能力。它们能识别代码中的冗余结构、低效算法、语法错误,还能根据编程语言规范(如 Python 的 PEP 8、Java 的 Google 编码规范)调整代码格式和风格。

比如输入一段存在冗余循环的 Python 代码,模型能识别出 “重复执行的相同逻辑”,并优化为更简洁的列表推导式;输入一段缩进混乱的 Java 代码,模型能按规范调整缩进,补充必要注释,提升可读性。

1.2 提示词的核心作用

提示词是连接用户需求和大模型能力的桥梁。没有提示词时,模型不知道用户需要 “优化代码的哪方面”(是性能、可读性还是 bug 修复);有了清晰的提示词,能明确告诉模型 “优化目标、优化标准、输出要求”,让模型精准发力,避免优化方向偏差。

比如简单说 “优化这段代码”,模型可能只做简单格式调整;而提示词 “优化这段 Python 代码:1. 目标:提升循环执行效率,减少运行时间;2. 标准:用列表推导式或内置函数替代 for 循环;3. 输出:对比优化前后的代码,说明优化思路和效率提升点”,模型会按要求聚焦性能优化,给出更有价值的结果。

1.3 新手用提示词优化代码的优势

1.3.1 降低优化门槛

新手对 “代码优化技巧”(如算法选择、语法简化)掌握不足,通过提示词让模型给出优化方案,无需自己深入研究优化原理,就能快速得到高质量代码。

1.3.2 节省时间成本

手动优化代码需要反复调试、验证,新手可能花费几小时才能解决一个性能问题;用提示词引导模型优化,几分钟就能得到优化结果,再结合手动验证,大幅节省时间。

1.3.3 学习优化思路

模型在优化代码时,若提示词要求 “说明优化思路”,新手能通过模型的解释,理解 “为什么这样优化”“优化依据是什么”,间接学习代码优化知识,提升自身编程能力。

二、实用技巧一:明确 “优化维度”,让提示词聚焦目标

2.1 核心逻辑

代码优化包含多个维度(性能、可读性、语法纠错、兼容性等),新手若不明确维度,提示词会过于宽泛,模型可能 “雨露均沾” 却没做好重点优化。明确 “优化维度”,就是在提示词中清晰指出 “要优化代码的哪一方面”,让模型集中资源解决核心问题。

比如需要优化一段 “处理数据的 Python 代码”,若目标是 “让代码运行更快”,就明确 “优化维度为性能”;若目标是 “让同事能看懂代码”,就明确 “优化维度为可读性”。

2.2 常见优化维度及提示词模板

2.2.1 维度 1:性能优化(提升运行效率)

适用场景:代码运行慢(如循环次数多、算法复杂)、占用内存高,需要减少运行时间或内存消耗。

提示词模板:

“请优化以下 [编程语言,如 Python/Java] 代码,优化维度为性能,具体要求:

  1. 分析当前代码的性能瓶颈(如冗余循环、低效算法、重复计算);
  1. 针对瓶颈进行优化,优先使用 [具体优化方式,如 “内置函数替代 for 循环”“更高效的算法(如哈希表)”“减少变量重复创建”];
  1. 输出内容包含:① 优化前代码;② 优化后代码;③ 性能瓶颈分析(100 字以内);④ 优化思路(说明用了什么方法,为什么能提升性能,100 字以内);⑤ 优化前后的运行时间对比(假设测试数据:[具体测试数据,如 “处理 10000 条数据”],估算时间即可)。

待优化代码:

[粘贴需要优化的代码]”

2.2.2 维度 2:可读性优化(提升代码易懂性)

适用场景:代码缩进混乱、变量命名不规范、无注释或注释模糊,需要让代码更易读、易维护。

提示词模板:

“请优化以下 [编程语言,如 Python/Java] 代码,优化维度为可读性,具体要求:

  1. 按 [编程语言规范,如 “Python PEP 8 规范”“Java Google 编码规范”] 调整代码格式(缩进、空格、换行);
  1. 优化变量 / 函数命名:命名要见名知意(如将 “a” 改为 “user_count”,将 “f1 ()” 改为 “calculate_total_price ()”);
  1. 补充注释:① 在函数 / 类上方添加 “功能说明 + 参数含义 + 返回值含义” 的注释;② 在复杂逻辑(如条件判断、循环)处添加行注释,说明 “为什么这么写”;
  1. 输出内容包含:① 优化前代码;② 优化后代码;③ 可读性优化点总结(分点说明:格式调整、命名优化、注释补充的具体内容)。

待优化代码:

[粘贴需要优化的代码]”

2.2.3 维度 3:语法纠错优化(修复代码错误)

适用场景:代码运行报错(如语法错误、逻辑错误、变量未定义),新手无法快速定位和修复。

提示词模板:

“请优化以下 [编程语言,如 Python/Java] 代码,优化维度为语法纠错,具体要求:

  1. 先分析代码中的错误(包括语法错误,如括号缺失、变量未定义;逻辑错误,如条件判断错误、循环边界错误);
  1. 修复所有错误,确保代码能正常运行;
  1. 输出内容包含:① 原始报错信息(若有,可粘贴;若无,说明 “代码运行时出现 XX 问题,如无输出、结果错误”);② 错误分析(分点说明每个错误的位置和原因,100 字以内);③ 修复后代码;④ 修复思路(说明每个错误是如何修复的,为什么这么修复,100 字以内)。

待优化代码:

[粘贴需要优化的代码]

原始报错信息(可选):

[粘贴报错信息,如 “NameError: name 'x' is not defined”]”

2.3 场景案例:性能优化(Python 代码)

2.3.1 待优化代码(计算 1-10000 内偶数的平方和)
 

# 计算1-10000内偶数的平方和

total = 0

for i in range(1, 10001):

if i % 2 == 0:

square = i * i

total = total + square

print(total)

问题:用普通 for 循环遍历 1-10000 个数字,再判断是否为偶数,存在冗余循环和判断,运行效率较低。

2.3.2 提示词示例

“请优化以下 Python 代码,优化维度为性能,具体要求:

  1. 分析当前代码的性能瓶颈;
  1. 针对瓶颈进行优化,优先使用 “列表推导式” 或 “内置函数(如 sum、filter)” 替代 for 循环;
  1. 输出内容包含:① 优化前代码;② 优化后代码;③ 性能瓶颈分析;④ 优化思路;⑤ 优化前后的运行时间对比(测试数据:处理 1-10000 内偶数的平方和)。

待优化代码:

计算 1-10000 内偶数的平方和

total = 0

for i in range(1, 10001):

if i % 2 == 0:

square = i * i

total = total + square

print(total)”

2.3.3 模型输出结果
  1. 优化前代码:
 

# 计算1-10000内偶数的平方和

total = 0

for i in range(1, 10001):

if i % 2 == 0:

square = i * i

total = total + square

print(total)

  1. 优化后代码:
 

# 计算1-10000内偶数的平方和

total = sum(i * i for i in range(2, 10001, 2)) # 直接生成偶数序列,用生成器表达式计算平方和

print(total)

  1. 性能瓶颈分析:

当前代码用 for 循环遍历 1-10000 个数字,再通过 if 判断筛选偶数,存在 “遍历多余奇数” 和 “手动累加计算” 的冗余操作,增加了运行时间。

  1. 优化思路:

用 range (2, 10001, 2) 直接生成 1-10000 内的偶数序列(步长为 2,从 2 开始),减少 “筛选奇数” 的判断;用 sum () 内置函数替代手动累加,sum () 是 C 语言实现的内置函数,运行速度比 Python 手动循环更快。

  1. 运行时间对比:
  • 优化前:遍历 10000 个数字 + 10000 次判断 + 5000 次累加,估算运行时间约 0.002 秒;
  • 优化后:生成 5000 个偶数 + 1 次 sum () 计算,估算运行时间约 0.0005 秒,效率提升约 4 倍。
2.3.4 新手操作建议

优化后,新手可通过 Python 的 time 模块验证实际运行时间:

 

import time

# 测试优化前代码

start1 = time.time()

total1 = 0

for i in range(1, 10001):

if i % 2 == 0:

total1 = total1 + i * i

end1 = time.time()

print(f"优化前运行时间:{end1 - start1:.6f}秒")

# 测试优化后代码

start2 = time.time()

total2 = sum(i * i for i in range(2, 10001, 2))

end2 = time.time()

print(f"优化后运行时间:{end2 - start2:.6f}秒")

通过实际测试,能更直观看到优化效果,同时理解 “内置函数比手动循环高效” 的原因。

三、实用技巧二:补充 “上下文信息”,让提示词更精准

3.1 核心逻辑

新手优化代码时,常只粘贴代码却不提供 “上下文信息”(如代码用途、运行环境、输入输出要求),导致模型误解代码的实际场景,优化后的代码虽 “看似优化”,却不符合实际使用需求。补充 “上下文信息”,就是在提示词中告诉模型 “代码是做什么的”“在什么环境下运行”“有什么特殊约束”,让模型的优化贴合实际场景。

比如一段 “处理 Excel 数据的 Python 代码”,若不说明 “Excel 文件的格式(如.xlsx/.csv)”“数据量大小(如 100 行 / 10 万行)”,模型可能优化为 “只适合小数据量的方法”,导致处理 10 万行数据时仍效率低下。

3.2 必补充的上下文信息类型

3.2.1 信息 1:代码用途(核心功能)

说明代码的核心目标,让模型知道 “优化不能改变代码的原始功能”。比如 “这段代码用于从 MySQL 数据库中查询用户订单数据,计算每个用户的月度消费总额”“这段代码用于读取本地 CSV 文件,筛选出年龄大于 18 岁的用户信息并保存到新文件”。

3.2.2 信息 2:运行环境(约束条件)

说明代码的运行环境和约束,如 “运行在 Python 3.8 环境,不能使用 Python 3.9 及以上的新语法”“运行在嵌入式设备中,内存有限,优化时需控制内存占用”“依赖的第三方库:只能使用 pandas,不能使用 numpy(项目已固定依赖)”。

3.2.3 信息 3:输入输出要求(数据特征)

说明代码的输入数据特征(如数据量、格式)和输出要求(如输出格式、精度),如 “输入数据是 10 万行的 CSV 文件,每行包含‘用户 ID、消费金额、消费时间’3 列”“输出结果需要保留 2 位小数,且按‘用户 ID’升序排序”“输入的字符串可能包含中文和特殊字符(如‘#、@’),优化时需确保字符处理正确”。

3.3 提示词模板(含上下文信息)

以 “优化 Python 数据处理代码” 为例,模板如下:

“请优化以下 Python 代码,具体要求:

  1. 优化维度:[选择维度,如 “性能”“可读性”];
  1. 上下文信息:

① 代码用途:从本地 CSV 文件(包含 “用户 ID、商品 ID、购买数量、单价、购买时间”5 列)中,计算每个商品的总销量(购买数量之和),并将结果保存到新的 CSV 文件;

② 运行环境:Python 3.7,依赖库只能使用 pandas(版本 1.3.5),不能使用其他库;

③ 输入输出要求:输入 CSV 文件约 10 万行数据,输出 CSV 文件需包含 “商品 ID、总销量”2 列,且按 “总销量” 降序排序;

  1. 输出内容:① 优化前代码;② 优化后代码;③ 优化思路(说明如何结合上下文信息进行优化);④ 验证方法(如何验证优化后的代码功能与原代码一致)。

待优化代码:

[粘贴需要优化的代码]”

3.4 场景案例:含上下文的可读性优化(Python 代码)

3.4.1 待优化代码(处理 CSV 数据)
 

import pandas as pd

def f(d):

d1 = d.groupby('商品ID')['购买数量'].sum()

d2 = d1.reset_index()

d2.columns = ['a', 'b']

d2 = d2.sort_values('b', ascending=False)

d2.to_csv('r.csv', index=False)

return d2

df = pd.read_csv('s.csv')

result = f(df)

print(result.head())

问题:函数命名 “f ()”、变量命名 “d/d1/d2/a/b” 无意义,无注释,代码格式混乱,且未说明上下文,模型若误判 “数据量小”,优化可能不贴合 10 万行数据场景。

3.4.2 提示词示例

“请优化以下 Python 代码,具体要求:

  1. 优化维度:可读性;
  1. 上下文信息:

① 代码用途:从本地 CSV 文件(s.csv,包含 “用户 ID、商品 ID、购买数量、单价、购买时间”5 列)中,计算每个商品的总销量(购买数量之和),并将结果保存到新的 CSV 文件(r.csv);

② 运行环境:Python 3.7,依赖库为 pandas 1.3.5,无需考虑性能(数据量 10 万行已满足当前需求);

③ 输入输出要求:输入 s.csv 约 10 万行,输出 r.csv 需包含 “商品 ID、总销量”2 列,按 “总销量” 降序排序,输出前 5 行结果;

  1. 输出内容:① 优化前代码;② 优化后代码;③ 优化思路;④ 验证方法。

待优化代码:

import pandas as pd

def f (d):

d1 = d.groupby (' 商品 ID')[' 购买数量 '].sum ()

d2 = d1.reset_index ()

d2.columns = ['a', 'b']

d2 = d2.sort_values ('b', ascending=False)

d2.to_csv ('r.csv', index=False)

return d2

df = pd.read_csv('s.csv')

result = f(df)

print(result.head())”

3.4.3 模型输出结果
  1. 优化前代码:
 

import pandas as pd

def f(d):

d1 = d.groupby('商品ID')['购买数量'].sum()

d2 = d1.reset_index()

d2.columns = ['a', 'b']

d2 = d2.sort_values('b', ascending=False)

d2.to_csv('r.csv', index=False)

return d2

df = pd.read_csv('s.csv')

result = f(df)

print(result.head())

  1. 优化后代码:
 

import pandas as pd

def calculate_product_total_sales(input_df):

"""

计算每个商品的总销量,并将结果保存到CSV文件

参数:

input_df (pd.DataFrame): 输入数据框,需包含"商品ID"和"购买数量"列(来自s.csv)

返回:

pd.DataFrame: 包含"商品ID"和"总销量"的结果数据框,按总销量降序排序

"""

# 按商品ID分组,计算每个商品的购买数量之和(即总销量)

product_sales = input_df.groupby('商品ID')['购买数量'].sum()

# 将Series转换为DataFrame,重置索引(让商品ID从索引变为列)

product_sales_df = product_sales.reset_index()

# 重命名列:确保列名见名知意

product_sales_df.columns = ['商品ID', '总销量']

# 按总销量降序排序(满足输出要求)

sorted_sales_df = product_sales_df.sort_values('总销量', ascending=False)

# 保存结果到CSV文件(输出文件名为r.csv,不保留索引列)

sorted_sales_df.to_csv('r.csv', index=False)

return sorted_sales_df

# 读取输入CSV文件(s.csv)

input_dataframe = pd.read_csv('s.csv')

# 调用函数计算商品总销量

sales_result = calculate_product_total_sales(input_dataframe)

# 打印结果的前5行(验证输出格式)

print("商品总销量前5名:")

print(sales_result.head())

  1. 优化思路:

① 命名优化:将无意义的 “f ()” 改为 “calculate_product_total_sales ()”(体现函数功能),“d/d1/d2” 改为 “input_df/product_sales/product_sales_df”(体现数据含义),“a/b” 改为 “商品 ID / 总销量”(与业务含义一致);

② 注释补充:函数上方添加 “功能 + 参数 + 返回值” 注释,复杂逻辑处添加行注释(如分组计算、列重命名),说明 “为什么这么做”;

③ 格式调整:按 Python PEP 8 规范调整缩进(4 个空格)、换行(运算符前后空格),添加打印说明(如 “商品总销量前 5 名:”),提升可读性;

④ 贴合上下文:保留 pandas 依赖,未引入其他库,确保符合 “Python 3.7+ pandas 1.3.5” 的环境要求,输出格式与 “商品 ID、总销量” 的要求一致。

  1. 验证方法:

① 功能验证:分别运行优化前和优化后代码,对比输出的 “r.csv” 文件内容(如商品 ID 对应的总销量是否一致)、打印的前 5 行结果是否相同,确保功能未改变;

② 可读性验证:让其他新手同事阅读两段代码,判断优化后代码是否能更快理解 “代码做什么、每个步骤的作用”。

四、实用技巧三:添加 “示例引导”,让提示词对齐预期

4.1 核心逻辑

新手对 “优化效果” 有预期(如希望代码用特定语法、特定结构),但只用文字描述难以让模型精准对齐预期。添加 “示例引导”,就是在提示词中给出 “符合预期的优化示例”(如优化后的代码片段、命名风格示例),让模型参考示例进行优化,确保结果符合新手的具体要求。

比如新手希望将 “for 循环优化为列表推导式”,但不确定如何描述,就可以在提示词中给出示例:“优化示例:将‘for i in range (5): list.append (i)’优化为‘list = [i for i in range (5)]’”,模型会参考示例的优化方式处理目标代码。

4.2 示例引导的两种常见形式

4.2.1 形式 1:优化方式示例(告诉模型 “用什么方法优化”)

适用于新手知道 “要用到的优化方法”,但不确定如何让模型应用该方法的场景。比如 “用 lambda 函数替代简单的 def 函数”“用 try-except 捕获特定异常”,可给出方法示例。

示例模板:

“优化方式示例:

  • 原代码(简单函数):def add (a, b): return a + b
  • 优化后(lambda 函数):add = lambda a, b: a + b

请参考以上示例,将待优化代码中的简单函数(只有 1 行返回值)优化为 lambda 函数,其他部分保持功能不变。”

4.2.2 形式 2:输出格式示例(告诉模型 “优化后是什么样”)

适用于新手对 “优化后的代码格式、风格” 有明确要求,比如 “注释格式为‘# 功能:XXX’”“变量命名为‘小写 + 下划线’风格”,可给出格式示例。

示例模板:

“输出格式示例:

  1. 注释格式:# 功能:读取 CSV 文件,参数为文件路径
  1. 变量命名:user_info、order_total、calculate_price(小写 + 下划线)
  1. 代码缩进:每个层级缩进 4 个空格,函数内代码与 def 行缩进一致

请参考以上示例,优化待优化代码的格式和命名,确保符合示例风格。”

4.3 提示词模板(含示例引导)

以 “优化 Java 代码的异常处理” 为例,模板如下:

“请优化以下 Java 代码,具体要求:

  1. 优化维度:语法纠错 + 可读性(添加异常处理,避免运行报错);
  1. 上下文信息:代码用途是读取本地 txt 文件(路径为 “D:/test.txt”),输出文件内容;运行环境为 Java 8;
  1. 示例引导(异常处理示例):

原代码(无异常处理):

FileReader fr = new FileReader ("test.txt");

BufferedReader br = new BufferedReader (fr);

String line = br.readLine ();

优化后(含异常处理):

try (FileReader fr = new FileReader ("test.txt");

BufferedReader br = new BufferedReader (fr)) {

String line = br.readLine ();

while (line != null) {

System.out.println (line);

line = br.readLine ();

}

} catch (FileNotFoundException e) {

System.out.println ("文件未找到:" + e.getMessage ());

} catch (IOException e) {

System.out.println ("文件读取错误:" + e.getMessage ());

}

  1. 输出内容:① 优化前代码;② 优化后代码;③ 优化说明(对比示例,说明如何参考示例进行异常处理)。

待优化代码:

[粘贴需要优化的 Java 代码]”

4.4 场景案例:示例引导的语法纠错优化(Java 代码)

4.4.1 待优化代码(读取 txt 文件,无异常处理)
 

import java.io.FileReader;

import java.io.BufferedReader;

public class ReadFile {

public static void main(String[] args) {

FileReader fr = new FileReader("D:/test.txt");

BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line != null) {

System.out.println(line);

line = br.readLine();

}

br.close();

fr.close();

}

}

问题:无异常处理(若文件不存在或读取错误,会直接报错崩溃),且未使用 Java 8 的 try-with-resources 语法(可能导致流未关闭,占用资源)。

4.4.2 提示词示例

“请优化以下 Java 代码,具体要求:

  1. 优化维度:语法纠错 + 可读性(添加异常处理,确保文件流正确关闭);
  1. 上下文信息:代码用途是读取本地 txt 文件(路径 “D:/test.txt”)并打印内容;运行环境为 Java 8;
  1. 示例引导(异常处理 + try-with-resources 示例):

原代码(无异常处理):

FileReader fr = new FileReader ("test.txt");

BufferedReader br = new BufferedReader (fr);

String line = br.readLine ();

优化后(含异常处理):

try (FileReader fr = new FileReader ("test.txt");

BufferedReader br = new BufferedReader (fr)) {

String line = br.readLine ();

while (line != null) {

System.out.println (line);

line = br.readLine ();

}

} catch (FileNotFoundException e) {

System.out.println ("文件未找到:" + e.getMessage ());

} catch (IOException e) {

System.out.println ("文件读取错误:" + e.getMessage ());

}

  1. 输出内容:① 优化前代码;② 优化后代码;③ 优化说明。

待优化代码:

import java.io.FileReader;

import java.io.BufferedReader;

public class ReadFile {

public static void main(String[] args) {

FileReader fr = new FileReader("D:/test.txt");

BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line != null) {

System.out.println(line);

line = br.readLine();

}

br.close();

fr.close();

}

}”

4.4.3 模型输出结果
  1. 优化前代码:
 

import java.io.FileReader;

import java.io.BufferedReader;

public class ReadFile {

public static void main(String[] args) {

FileReader fr = new FileReader("D:/test.txt");

BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line != null) {

System.out.println(line);

line = br.readLine();

}

br.close();

fr.close();

}

}

  1. 优化后代码:
 

import java.io.FileReader;

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.IOException; // 导入所需异常类

public class ReadFile {

public static void main(String[] args) {

// 参考示例,使用try-with-resources语法(Java 8+),自动关闭文件流,无需手动close()

try (FileReader fr = new FileReader("D:/test.txt");

BufferedReader br = new BufferedReader(fr)) {

String line = br.readLine();

// 循环读取文件内容,直到读取到null(文件末尾)

while (line != null) {

System.out.println(line);

line = br.readLine(); // 读取下一行

}

} catch (FileNotFoundException e) {

// 捕获“文件未找到”异常,给出友好提示(参考示例格式)

System.out.println("文件未找到:" + e.getMessage());

} catch (IOException e) {

// 捕获“文件读取错误”异常(如权限不足、文件损坏)

System.out.println("文件读取错误:" + e.getMessage());

}

}

}

  1. 优化说明:

① 异常处理:参考示例,添加了 FileNotFoundException(文件未找到)和 IOException(读取错误)的捕获,避免代码直接崩溃,同时输出友好的错误提示,方便定位问题;

② 资源关闭:参考示例的 try-with-resources 语法,将 FileReader 和 BufferedReader 放在 try 后的括号中,Java 会自动在代码执行完后关闭文件流,解决了原代码 “手动 close () 可能未执行” 的问题(如中间报错导致 close () 被跳过);

③ 语法完善:导入了所需的异常类(FileNotFoundException、IOException),原代码缺少导入会导致编译报错,优化后确保代码能正常编译运行。

4.4.1 新手操作建议

优化后,新手可通过两种方式验证:

  1. 正常场景:在 D 盘创建 test.txt 文件,写入几行内容,运行代码,查看是否能正确打印内容;
  1. 异常场景:删除 D 盘的 test.txt 文件,运行代码,查看是否输出 “文件未找到” 的提示(而非报错崩溃),确保异常处理生效。

五、用提示词优化代码的常见问题及解决方法

5.1 问题一:模型优化后的代码功能改变

5.1.1 问题表现

优化后的代码与原代码功能不一致,比如原代码 “计算 1-10 的偶数和”,优化后代码 “计算 1-10 的奇数和”,或原代码 “保存数据到 CSV”,优化后代码 “保存数据到 TXT”。

5.1.2 错误原因
  1. 提示词未明确 “保留原功能”,模型为了优化可能简化或修改了核心逻辑;
  1. 未提供 “原代码功能说明”,模型误解了代码的核心目标(如把 “筛选偶数” 误解为 “筛选奇数”);
  1. 示例引导中的示例与原功能冲突,模型参考示例时偏离了原目标。
5.1.3 解决方法
  1. 提示词中强制要求 “保留原功能”:在提示词开头添加 “优化时必须保证代码功能与原代码完全一致,不得改变核心逻辑(如计算逻辑、输入输出目标)”;
  1. 详细说明原代码功能:在上下文信息中添加 “原代码核心功能:XXX”,如 “原代码核心功能:计算 1-100 内所有偶数的和,输出结果为整数”;
  1. 检查示例与原功能的一致性:确保示例引导中的示例与原代码功能相关,不冲突,比如原代码是 “CSV 数据处理”,示例不要用 “TXT 数据处理” 的例子。

5.2 问题二:模型优化过度,代码复杂度增加

5.2.1 问题表现

模型为了追求 “极致优化”,将简单代码改为复杂代码,比如原代码 “用 for 循环计算求和”(新手能理解),优化后代码 “用复杂的递归 + lambda 函数计算求和”(新手无法理解,且没必要),或原代码处理 100 行数据,优化后代码添加了 “分布式处理” 的复杂逻辑(过度优化)。

5.2.2 错误原因
  1. 提示词未明确 “优化程度”,模型默认按 “最高标准” 优化,忽略了新手的理解能力和实际需求;
  1. 未说明 “代码的使用场景”(如数据量、维护人员),模型不知道 “代码只需满足简单场景”。
5.2.3 解决方法
  1. 提示词中明确 “优化程度”:添加 “优化后的代码需符合新手理解能力,避免使用复杂语法(如递归、高级设计模式)和冗余逻辑,以‘简洁、易懂’为优先,而非‘极致性能’”;
  1. 说明使用场景的约束:在上下文信息中添加 “使用场景:处理 100 行以内的小数据量,维护人员为编程新手,代码需易于理解和修改”,让模型根据场景调整优化程度;
  1. 限制优化方法:在提示词中指定 “只能使用 XXX 优化方法”,如 “只能使用列表推导式优化 for 循环,不得使用递归、多线程等复杂方法”。

5.3 问题三:模型无法优化特定类型代码

5.3.1 问题表现

对于某些特定代码(如小众编程语言代码、包含特殊业务逻辑的代码),模型无法给出有效优化,比如输出 “无法识别该编程语言”“无法理解业务逻辑,无法优化”,或优化结果只是简单格式调整,无实质优化。

5.3.2 错误原因
  1. 模型对小众编程语言(如 Rust、Go 以外的冷门语言)的支持不足,训练数据少,无法理解语法和优化技巧;
  1. 代码包含特殊业务逻辑(如公司内部的加密算法、自定义数据格式处理),提示词未提供业务逻辑说明,模型无法理解代码含义,无法优化;
  1. 提示词中的代码格式混乱(如缩进错误、语法错误过多),模型无法正确解析代码,自然无法优化。
5.3.3 解决方法
  1. 选择支持目标语言的模型:先确认模型支持的编程语言(如 GPT-4 支持 Python、Java、C++ 等主流语言,CodeLlama 对代码的支持更专业),小众语言优先使用专门的代码模型;
  1. 补充特殊业务逻辑说明:在上下文信息中添加 “业务逻辑说明:XXX”,如 “业务逻辑:这段代码是公司内部的用户密码加密逻辑,其中‘encrypt ()’函数是自定义加密函数,优化时不得修改该函数,只需优化调用逻辑”;
  1. 先修复代码基础错误:若原代码存在语法错误或格式混乱,先让模型 “先修复语法错误和格式”,再进行优化,可使用 “语法纠错优化” 的提示词模板,修复后再用其他优化技巧。

5.4 问题四:优化后的代码存在潜在 bug

5.4.1 问题表现

优化后的代码能运行,但存在潜在问题,比如原代码 “处理字符串时区分大小写”,优化后代码 “不区分大小写”(导致数据错误),或优化后的代码在特定输入下报错(如输入为空时崩溃),但模型未发现。

5.4.2 错误原因
  1. 提示词未要求 “验证优化后的代码”,模型只关注 “优化”,未考虑边界场景(如空输入、异常数据);
  1. 未提供 “测试数据”,模型无法模拟实际输入验证代码是否存在 bug;
  1. 模型自身的局限性:对于复杂的边界场景,模型可能无法完全覆盖,导致遗漏潜在 bug。
5.4.3 解决方法
  1. 提示词要求模型 “验证代码”:添加 “优化后需提供‘测试方案’,包括至少 3 种测试场景(正常输入、边界输入如空数据、异常输入如错误格式),并说明每种场景的预期输出,确保代码在所有场景下无 bug”;
  1. 提供具体测试数据:在提示词中添加 “测试数据:① 正常输入:XXX;② 边界输入:XXX;③ 异常输入:XXX”,如 “测试数据:① 正常输入:[1,2,3,4];② 边界输入:[](空列表);③ 异常输入:[1,'a',3](包含非数字)”;
  1. 新手手动验证:优化后,新手需用测试数据实际运行代码,检查是否存在 bug,尤其是模型未覆盖的场景,不要完全依赖模型的优化结果。

六、用提示词优化代码的工具推荐

6.1 提示词生成工具(快速生成优化提示词)

6.1.1 豆包提示词生成器
  • 特点:支持 “代码优化提示词” 专项生成,新手只需输入 “编程语言(如 Python/Java)”“优化维度(性能 / 可读性 / 纠错)”“上下文信息(代码用途、运行环境)”,工具会自动生成包含 “维度要求、上下文、输出格式” 的完整提示词;生成的提示词语言简单,符合大模型理解习惯,无需手动梳理结构。
  • 适用人群:新手,适合快速生成符合要求的优化提示词,节省时间。
  • 使用步骤:1. 打开豆包提示词生成器,选择 “代码优化” 分类;2. 输入编程语言(如 “Python”);3. 选择优化维度(如 “性能优化”);4. 填写上下文信息(代码用途:“计算偶数和”,运行环境:“Python 3.8”);5. 点击 “生成”,工具生成提示词;6. 复制提示词,粘贴到大模型中,补充待优化代码即可。
6.1.2 PromptBase(代码优化提示词模板)
  • 特点:包含大量 “代码优化提示词” 模板,覆盖 Python、Java、C++ 等主流语言,每个模板都针对特定优化场景(如 “Python 列表推导式优化”“Java 异常处理优化”“代码可读性规范优化”);模板中已包含 “维度要求、上下文示例、输出格式”,新手只需替换 “待优化代码” 和 “具体上下文” 即可使用。
  • 适用人群:所有用户,适合快速找到对应语言和场景的模板,避免从零开始写提示词。
  • 使用步骤:1. 打开 PromptBase 官网,搜索 “代码优化”+ 编程语言(如 “Python code optimization”);2. 浏览模板,选择与需求匹配的(如 “Python Performance Optimization Prompt”);3. 查看模板内容,替换模板中的 “[待优化代码]”“[上下文信息]” 为自己的内容;4. 将修改后的提示词输入大模型,生成优化结果。

6.2 代码优化大模型推荐

6.2.1 CodeLlama(Meta 推出,代码专用模型)
  • 特点:专门针对代码处理优化的大模型,支持 Python、Java、C++、JavaScript 等多种主流编程语言;对代码的理解和优化能力强,尤其擅长 “性能优化”“语法纠错”“代码补全”;支持生成详细的优化思路和注释,适合新手学习;开源版本可本地部署,适合对数据隐私有要求的场景。
  • 适用人群:新手,尤其是需要频繁处理代码优化的用户。
  • 使用方式:1. 在线使用:通过 Hugging Face、Replicate 等平台在线调用;2. 本地部署:下载开源模型(如 CodeLlama-7B-Code),使用 PyTorch 或 TensorFlow 框架部署,适合有一定环境配置能力的新手;3. 提示词适配:使用本文中的提示词模板,无需额外调整,模型能准确理解 “优化维度、上下文信息”。
6.2.2 GPT-4(通用大模型,代码优化能力强)
  • 特点:通用大模型中代码处理能力顶尖,能理解复杂代码逻辑,支持多语言代码优化;擅长 “结合上下文信息优化”,比如根据 “数据量、运行环境” 调整优化策略;能生成详细的优化说明和验证方法,帮助新手理解优化思路;支持多轮交互,若优化结果不符合预期,可通过追问调整(如 “再优化一下,不要用递归”)。
  • 适用人群:所有用户,适合处理复杂代码优化(如多语言混合代码、包含业务逻辑的代码)。
  • 使用方式:1. 在线使用:通过 ChatGPT 官网或 API 调用;2. 提示词使用:直接输入本文中的提示词模板,补充待优化代码和上下文信息;3. 多轮优化:若第一次优化结果不佳,追问 “请修改优化方式,要求:1. 保留原功能;2. 不使用 XXX 语法;3. 补充注释”,模型会根据追问调整。
6.2.3 通义千问(阿里推出,中文提示词适配好)
  • 特点:对中文提示词的理解能力强,适合新手用中文撰写提示词(如 “优化这段 Python 代码,提升可读性”);支持主流编程语言,优化结果符合中文开发者的编码习惯(如注释用中文,命名符合中文业务场景);提供 “代码解释” 功能,能详细说明优化后的代码每一步的作用,帮助新手理解。
  • 适用人群:中文新手用户,适合用中文沟通和理解优化过程。
  • 使用方式:1. 在线使用:通过通义千问官网或 APP;2. 提示词使用:直接用中文输入提示词,如 “请优化以下 Python 代码,要求:1. 提升运行效率;2. 代码用途是处理 10 万行 CSV 数据;3. 输出优化前后的代码和思路”;3. 代码解释:生成优化结果后,可追问 “请解释优化后代码的每一步作用”,模型会用中文详细说明。

6.3 代码验证工具(验证优化后代码的正确性)

6.3.1 在线代码运行平台(如 JDoodle、OnlineGDB)
  • 特点:支持多编程语言在线运行代码,无需本地配置环境;能快速运行优化前后的代码,对比输出结果是否一致;支持输入测试数据,验证代码在不同场景下的运行情况;部分平台(如 JDoodle)支持代码语法检查,能提前发现语法错误。
  • 适用人群:所有新手,适合快速验证代码功能和语法正确性。
  • 使用步骤:1. 打开平台(如 JDoodle),选择目标编程语言(如 Python);2. 粘贴优化前代码,输入测试数据,点击 “Run”,记录输出结果;3. 粘贴优化后代码,输入相同测试数据,点击 “Run”,对比两次输出结果是否一致;4. 若不一致,返回大模型调整提示词,重新优化。
6.3.2 代码质量检查工具(如 SonarLint、Pylint)
  • 特点:专门检查代码质量,包括 “可读性(命名、注释)”“性能(冗余代码、低效算法)”“语法规范(缩进、空格)”;能生成详细的质量报告,指出优化后的代码是否仍存在问题(如 “变量命名不规范”“存在未使用的变量”);支持集成到本地 IDE(如 VS Code、PyCharm),实时检查代码质量。
  • 适用人群:需要提升代码质量的新手,适合验证优化后的代码是否符合行业规范。
  • 使用步骤:1. 安装工具(如在 VS Code 中安装 Pylint 插件);2. 打开优化后的代码文件;3. 工具自动运行检查,在代码旁标注问题(如红色波浪线表示错误,黄色波浪线表示警告);4. 根据工具提示,手动调整代码(如修改变量命名、补充注释),进一步优化代码质量。

七、实际应用拓展:不同场景下的提示词优化案例

7.1 场景一:Python 数据分析代码优化(性能 + 可读性)

7.1.1 需求背景

新手用 pandas 处理 10 万行用户消费数据(CSV 文件),代码运行慢且可读性差,需要优化性能(减少运行时间)和可读性(添加注释、规范命名)。

7.1.2 待优化代码
 

import pandas as pd

def f1(df):

df1 = df[df['消费金额'] > 100]

df2 = df1.groupby('用户ID')['消费金额'].sum()

df3 = df2.reset_index()

df3.columns = ['u', 'm']

df4 = df3.sort_values('m', ascending=False)

return df4

df = pd.read_csv('user_data.csv')

r = f1(df)

print(r.head(10))

7.1.3 提示词示例

“请优化以下 Python 代码,具体要求:

  1. 优化维度:性能 + 可读性;
  1. 上下文信息:

① 代码用途:读取 10 万行用户消费数据(user_data.csv,含 “用户 ID、消费金额、消费时间”3 列),筛选出消费金额 > 100 的记录,计算每个用户的总消费金额,按总消费金额降序排序,输出前 10 名用户;

② 运行环境:Python 3.9,pandas 2.0.3,无其他依赖库限制;

③ 输入输出要求:输入 CSV 文件 10 万行,输出前 10 名用户的 “用户 ID、总消费金额”;

  1. 输出内容:① 优化前代码;② 优化后代码;③ 性能优化点 + 可读性优化点(分点说明);④ 运行时间对比(估算 10 万行数据的运行时间)。

待优化代码:

import pandas as pd

def f1 (df):

df1 = df [df [' 消费金额 '] > 100]

df2 = df1.groupby (' 用户 ID')[' 消费金额 '].sum ()

df3 = df2.reset_index ()

df3.columns = ['u', 'm']

df4 = df3.sort_values ('m', ascending=False)

return df4

df = pd.read_csv('user_data.csv')

r = f1(df)

print(r.head(10))”

7.1.4 模型输出结果(核心部分)

优化后代码:

 

import pandas as pd

def calculate_high_spend_user_total(df):

"""

筛选高消费用户并计算总消费金额

参数:

df (pd.DataFrame): 输入用户消费数据框,需包含"用户ID"和"消费金额"列

返回:

pd.DataFrame: 消费金额>100的用户总消费数据,按总消费金额降序排序,含"用户ID、总消费金额"列

"""

# 性能优化:合并筛选和分组计算,减少中间DataFrame创建(原代码创建4个DataFrame,现减少为2个)

# 1. 筛选消费金额>100的记录,同时保留需要的列(减少数据量)

high_spend_df = df[df['消费金额'] > 100][['用户ID', '消费金额']]

# 2. 按用户ID分组计算总消费金额,并重命名列(见名知意)

user_total_spend = high_spend_df.groupby('用户ID', as_index=False)['消费金额'].sum()

user_total_spend.columns = ['用户ID', '总消费金额']

# 3. 按总消费金额降序排序,性能优化:sort_values默认已优化,无需额外调整

sorted_user_spend = user_total_spend.sort_values('总消费金额', ascending=False)

return sorted_user_spend

# 读取用户消费数据,性能优化:指定dtype减少内存占用(若已知列类型)

user_consume_df = pd.read_csv('user_data.csv', dtype={'用户ID': str, '消费金额': float})

# 计算高消费用户总金额

high_spend_result = calculate_high_spend_user_total(user_consume_df)

# 输出前10名用户,添加说明提升可读性

print("消费金额>100的用户总消费TOP10:")

print(high_spend_result.head(10))

优化点说明:

  • 性能优化:① 合并筛选和列选择(df [df [' 消费金额 ']>100][[' 用户 ID',' 消费金额 ']]),减少中间 DataFrame 创建;② 读取 CSV 时指定 dtype,减少内存占用;
  • 可读性优化:① 函数 / 变量命名见名知意;② 补充函数注释和行注释;③ 打印时添加说明文字。

7.2 场景二:Java 后端接口代码优化(可读性 + 异常处理)

7.2.1 需求背景

新手编写 Java 后端接口代码(查询用户信息),代码无异常处理(如数据库连接失败、用户不存在),命名不规范,需要优化可读性和稳定性。

7.2.2 待优化代码
 

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

public class UserDAO {

public static void getU(String id) {

Connection c = null;

Statement s = null;

ResultSet r = null;

try {

Class.forName("com.mysql.cj.jdbc.Driver");

c = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456");

s = c.createStatement();

String sql = "select * from user where user_id=" + id;

r = s.executeQuery(sql);

while (r.next()) {

System.out.println("用户ID:" + r.getString("user_id") + ",姓名:" + r.getString("user_name"));

}

} catch (Exception e) {

e.printStackTrace();

} finally {

try {

if (r != null) r.close();

if (s != null) s.close();

if (c != null) c.close();

} catch (Exception e) {

e.printStackTrace();

}

}

}

public static void main(String[] args) {

getU("1");

}

}

7.2.3 提示词示例

“请优化以下 Java 代码,具体要求:

  1. 优化维度:可读性 + 异常处理;
  1. 上下文信息:

① 代码用途:Java 后端 DAO 层代码,通过用户 ID 从 MySQL 数据库(test 库 user 表)查询用户信息(user_id、user_name)并打印;

② 运行环境:Java 8,MySQL 8.0,依赖 mysql-connector-java 8.0.30;

③ 异常场景:可能出现 “数据库连接失败”“SQL 语法错误”“用户 ID 不存在”“结果集为空” 等场景;

  1. 输出内容:① 优化前代码;② 优化后代码;③ 优化说明(可读性优化点 + 异常处理优化点)。

待优化代码:

[粘贴上述 Java 代码]”

7.2.4 模型输出结果(核心部分)

优化后代码:

 

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.SQLException;

import java.sql.ClassNotFoundException;

/**

* 用户数据访问对象(DAO):负责从MySQL数据库查询用户信息

*/

public class UserDAO {

// 数据库连接常量:避免硬编码,提升可维护性

private static final String DB_URL = "jdbc:mysql://localhost:3306/test";

private static final String DB_USER = "root";

private static final String DB_PASSWORD = "123456";

private static final String DRIVER_CLASS = "com.mysql.cj.jdbc.Driver";

/**

* 根据用户ID查询用户信息并打印

* @param userId 用户ID(字符串类型,避免SQL注入风险)

* @throws ClassNotFoundException 驱动类未找到异常(如依赖缺失)

* @throws SQLException SQL异常(如连接失败、语法错误、查询失败)

*/

public static void getUserInfoById(String userId) throws ClassNotFoundException, SQLException {

// 资源声明:使用try-with-resources语法,自动关闭连接、Statement、ResultSet

try (Connection conn = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);

Statement stmt = conn.createStatement()) {

// 1. 加载数据库驱动

Class.forName(DRIVER_CLASS);

// 2. 构建SQL(优化:避免字符串拼接,减少SQL注入风险,此处简化处理,实际建议用PreparedStatement)

String sql = String.format("select user_id, user_name from user where user_id = '%s'", userId);

// 3. 执行查询

try (ResultSet rs = stmt.executeQuery(sql)) {

// 检查结果集是否为空(处理“用户ID不存在”场景)

if (!rs.next()) {

System.out.println("查询结果:未找到用户ID为【" + userId + "】的用户");

return;

}

// 遍历结果集(若有多个用户,此处假设user_id唯一)

do {

String userIdFromDb = rs.getString("user_id");

String userNameFromDb = rs.getString("user_name");

System.out.println("查询结果:用户ID=" + userIdFromDb + ",用户姓名=" + userNameFromDb);

} while (rs.next());

}

} catch (ClassNotFoundException e) {

System.err.println("数据库驱动加载失败:" + e.getMessage() + ",请检查mysql-connector依赖是否正确");

throw e; // 抛出异常,让调用者处理

} catch (SQLException e) {

// 区分不同SQL异常场景,给出具体提示

if (e.getSQLState().startsWith("08")) {

System.err.println("数据库连接失败:" + e.getMessage() + ",请检查URL、用户名、密码是否正确");

} else if (e.getSQLState().startsWith("42")) {

System.err.println("SQL语法错误:" + e.getMessage() + ",SQL语句:" + sql);

} else {

System.err.println("查询用户信息失败:" + e.getMessage());

}

throw e;

}

}

public static void main(String[] args) {

try {

// 测试查询:存在的用户ID

getUserInfoById("1");

// 测试查询:不存在的用户ID

getUserInfoById("999");

} catch (ClassNotFoundException | SQLException e) {

System.err.println("程序执行失败:" + e.getMessage());

}

}

}

优化说明:

  • 可读性优化:① 类 / 方法 / 变量命名规范(UserDAO、getUserInfoById、DB_URL);② 补充类注释和方法注释;③ 提取数据库常量,避免硬编码;
  • 异常处理优化:① 细分异常场景(驱动加载失败、连接失败、语法错误、用户不存在),给出具体提示;② 使用 try-with-resources 自动关闭资源;③ 处理结果集为空场景,避免无输出。

八、注意事项:新手用提示词优化代码的关键原则

8.1 始终验证优化后的代码

8.1.1 核心原则

不要完全信任模型的优化结果,必须手动验证代码的 “功能一致性” 和 “正确性”,尤其是涉及业务逻辑、数据处理、资金计算的代码(如订单金额计算、用户数据筛选)。

8.1.2 验证方法
  1. 功能验证:运行优化前后的代码,输入相同的测试数据,对比输出结果是否完全一致(如计算结果、生成的文件、打印的内容);
  1. 异常验证:测试边界场景(如空输入、错误输入、大数据量),确保优化后的代码能正确处理异常,不崩溃;
  1. 性能验证(若优化性能):用 time 模块(Python)或 System.currentTimeMillis ()(Java)计算运行时间,确认性能确实有提升,而非模型估算。

8.2 提示词不要过于复杂

8.2.1 核心原则

新手写提示词时,以 “简单、清晰” 为优先,避免在一个提示词中包含过多要求(如同时优化性能、可读性、兼容性、异常处理),导致模型无法兼顾,优化效果差。

8.2.2 实践建议
  1. 分步骤优化:先优化 “语法纠错”,确保代码能运行;再优化 “可读性”,让代码易懂;最后优化 “性能”,提升效率,分 3 次提示词完成,而非 1 次;
  1. 每次聚焦一个核心目标:每个提示词只包含 1 个优化维度(如 “本次只优化可读性,不考虑性能”),让模型集中资源处理一个目标。

8.3 结合自身学习,理解优化思路

8.3.1 核心原则

用提示词优化代码的同时,要理解 “模型为什么这么优化”,而不是 “直接复制使用优化后的代码”,否则无法提升自身编程能力,下次遇到类似问题仍需依赖模型。

8.3.2 学习方法
  1. 分析模型的优化思路:重点看模型输出的 “优化思路”“优化说明”,理解 “为什么用这种方法优化”(如 “为什么用列表推导式比 for 循环快”);
  1. 手动复现优化过程:尝试不看模型的优化结果,自己按优化思路手动修改代码,对比与模型结果的差异,找出自己的不足;
  1. 记录优化技巧:将常用的优化技巧(如 “用 sum () 替代手动累加”“try-with-resources 关闭资源”)记录到笔记中,定期复习,逐步内化为自己的知识。

8.4 尊重代码版权和安全性

8.4.1 核心原则

优化代码时,确保待优化代码的版权归属(如自己编写的代码、公司授权的代码),不优化他人无授权的代码;同时注意代码安全性,不将包含敏感信息(如数据库密码、用户隐私数据)的代码粘贴到公共大模型中。

8.4.2 安全建议
  1. 脱敏处理:若代码包含敏感信息,优化前先脱敏,如将 “数据库密码 = 123456” 改为 “数据库密码 =”,将 “用户手机号 = 13800138000” 改为 “用户手机号 =”;
  1. 选择安全模型:处理敏感代码时,优先使用本地部署的开源模型(如 CodeLlama),而非公共在线模型,避免敏感信息泄露;
  1. 确认版权:优化公司代码前,确认公司允许使用大模型辅助优化,不违反公司的代码管理规定。

    九、不同编程语言的提示词优化差异

    9.1 核心逻辑

    不同编程语言的语法规则、优化方向、常用库不同,提示词若不结合语言特性,优化效果会大打折扣。比如 Python 侧重 “内置函数、列表推导式” 优化,Java 侧重 “异常处理、资源关闭” 优化,JavaScript 侧重 “异步逻辑、DOM 操作效率” 优化。因此,针对不同语言,需在提示词中调整 “优化方式” 和 “上下文信息”,贴合语言特性。

    9.2 主流编程语言的提示词优化要点及示例

    9.2.1 Python 语言
  2. 核心优化方向:性能(内置函数、生成器、pandas 优化)、可读性(PEP 8 规范、命名风格)、语法简洁(列表推导式、lambda 函数);
  3. 提示词要点:需说明 “是否使用第三方库(如 pandas、numpy)”“数据量大小”“Python 版本(如 3.7/3.10)”;
  4. 示例模板(pandas 数据处理优化):
  5. “请优化以下 Python 代码(Python 3.9,依赖 pandas 2.0),优化维度为性能,上下文信息:

    ① 代码用途:处理 10 万行 CSV 数据(含 “用户 ID、消费时间、消费金额”),筛选出 2024 年的消费记录,计算每个用户的月均消费金额;

    ② 优化要求:优先使用 pandas 的向量化操作替代 for 循环,减少中间 DataFrame 创建;

    ③ 输出:优化前后代码、性能瓶颈分析、运行时间对比(测试数据:10 万行 CSV)。

    待优化代码:

    import pandas as pd

    df = pd.read_csv ('user_spend.csv')

    df [' 消费时间 '] = pd.to_datetime (df [' 消费时间 '])

    2024_data = []

    for index, row in df.iterrows ():

    if row [' 消费时间 '].year == 2024:

    2024_data.append (row)

    2024_df = pd.DataFrame (2024_data)

    user_monthly = 2024_df.groupby ([' 用户 ID', 2024_df [' 消费时间 '].dt.month])[' 消费金额 '].sum ()

    user_avg = user_monthly.groupby (' 用户 ID').mean ()

    print (user_avg.head ())”

    9.2.2 Java 语言
  6. 核心优化方向:异常处理(try-with-resources、细分异常)、资源管理(流关闭、连接池)、代码规范(Google 编码规范、命名);
  7. 提示词要点:需说明 “Java 版本(如 8/11)”“依赖框架(如 Spring、JDBC)”“运行环境(如后端服务、Android)”;
  8. 示例模板(JDBC 查询优化):
  9. “请优化以下 Java 代码(Java 8,依赖 mysql-connector 8.0),优化维度为可读性 + 异常处理,上下文信息:

    ① 代码用途:通过 JDBC 查询商品表(goods),根据商品 ID 获取商品名称和价格;

    ② 优化要求:按 Google 编码规范调整格式,用 try-with-resources 关闭资源,细分 SQL 异常场景;

    ③ 输出:优化前后代码、优化说明(可读性 + 异常处理点)。

    待优化代码:

    import java.sql.*;

    public class GoodsDAO {

    public static void getGoods (String id) {

    Connection conn = null;

    PreparedStatement pstmt = null;

    ResultSet rs = null;

    try {

    Class.forName ("com.mysql.cj.jdbc.Driver");

    conn = DriverManager.getConnection ("jdbc:mysql://localhost:3306/shop", "root", "123456");

    String sql = "select name, price from goods where id=?";

    pstmt = conn.prepareStatement(sql);

    pstmt.setString(1, id);

    rs = pstmt.executeQuery();

    if (rs.next()) {

    System.out.println(rs.getString(1) + "," + rs.getDouble(2));

    }

    } catch (Exception e) {

    e.printStackTrace();

    } finally {

    try {

    if (rs != null) rs.close();

    if (pstmt != null) pstmt.close();

    if (conn != null) conn.close();

    } catch (Exception e) {}

    }

    }

    }”

    9.2.3 JavaScript 语言
  10. 核心优化方向:异步逻辑(Promise、async/await 替代回调)、DOM 操作(减少重排重绘)、性能(数组方法替代 for 循环);
  11. 提示词要点:需说明 “运行环境(浏览器 / Node.js)”“是否依赖前端框架(如 Vue、React)”“异步场景(如接口请求、文件读取)”;
  12. 示例模板(异步接口请求优化):
  13. “请优化以下 JavaScript 代码(浏览器环境,无框架),优化维度为可读性 + 性能,上下文信息:

    ① 代码用途:先请求用户接口(/api/user)获取用户 ID,再用用户 ID 请求订单接口(/api/orders?userId=XXX),展示订单列表;

    ② 优化要求:用 async/await 替代回调函数,添加请求异常处理(如接口报错、无数据),减少全局变量使用;

    ③ 输出:优化前后代码、优化思路(异步逻辑 + 异常处理)。

    待优化代码:

    let userId;

    \(.get('/api/user', function(userData) { userId = userData.id; \).get ('/api/orders?userId=' + userId, function (orderData) {

    if (orderData.length > 0) {

    for (let i = 0; i < orderData.length; i++) {

    console.log (orderData [i].id);

    }

    }

    }, function (err) {

    console.log (' 订单接口错了 ');

    });

    }, function (err) {

    console.log (' 用户接口错了 ');

    });”

    9.3 新手操作建议

  14. 先明确编程语言特性:优化前简单了解目标语言的核心优化方向(如 Python 的向量化、Java 的资源管理),避免在提示词中提 “不符合语言特性” 的要求(如让 Java 用列表推导式);
  15. 参考语言官方规范:在提示词中引用官方规范(如 Python PEP 8、Java Google 规范),让模型优化更贴合行业标准;
  16. 测试语言兼容性:优化后确认代码在目标语言版本中能运行(如 Python 3.7 不支持某些 3.10 语法),避免因版本问题导致代码报错。
  17. 十、提示词优化代码的进阶场景

    10.1 场景一:多语言混合代码优化(如 Python+Shell、Java+JavaScript)

    10.1.1 需求背景

    新手处理跨语言脚本(如 Python 调用 Shell 脚本执行命令,Java 后端调用 JavaScript 前端接口),代码逻辑混乱、交互效率低,需要优化代码结构和交互方式。

    10.1.2 待优化代码(Python 调用 Shell 脚本)
     

    import os

    # 调用Shell脚本获取系统内存信息,再用Python处理数据

    os.system("sh get_memory.sh > memory.txt")

    f = open("memory.txt", "r")

    content = f.read()

    f.close()

    lines = content.split('\n')

    used_mem = 0

    for line in lines:

    if "Used" in line:

    used_mem = line.split(':')[1].strip()

    print("已用内存:" + used_mem)

    问题:用文件(memory.txt)传递数据,效率低;无异常处理(Shell 脚本执行失败、文件不存在);代码结构混乱。

    10.1.3 提示词示例

    “请优化以下 Python+Shell 混合代码,具体要求:

  18. 优化维度:性能 + 可读性;
  19. 上下文信息:
  20. ① 代码用途:Python 调用 Shell 命令获取系统内存信息(无需单独 Shell 脚本),提取 “已用内存” 并打印,运行环境为 Linux+Python 3.8;

    ② 优化要求:用 subprocess 模块替代 os.system(避免生成中间文件),添加异常处理(命令执行失败、无内存数据),规范代码结构;

  21. 输出:优化前后代码、优化说明(性能提升点 + 可读性优化点)。
  22. 待优化代码:

    [粘贴上述 Python 代码]”

    10.1.4 模型输出结果(核心部分)

    优化后代码:

     

    import subprocess

    from subprocess import CalledProcessError

    def get_and_parse_system_memory():

    """

    调用Shell命令获取Linux系统已用内存信息并解析

    返回:str,已用内存(如"8GB");若失败返回空字符串

    """

    try:

    # 优化1:用subprocess.check_output直接获取Shell命令输出,避免生成中间文件(memory.txt)

    # 执行free命令获取内存信息,-h参数显示人类可读格式

    result = subprocess.check_output(

    ["free", "-h"], # Shell命令及参数

    stderr=subprocess.STDOUT, # 捕获标准错误

    text=True # 输出为字符串(无需解码)

    )

    # 优化2:结构化解析输出,避免冗余循环

    lines = result.strip().split('\n')

    for line in lines:

    # 匹配"Mem:"开头的行(内存信息行)

    if line.startswith("Mem:"):

    # 拆分列(Mem: total used free shared buff/cache available)

    mem_cols = line.split()

    used_mem = mem_cols[2] # 第3列是已用内存

    return used_mem

    # 未找到内存数据时的异常

    raise ValueError("未从Shell命令输出中找到内存信息")

    except CalledProcessError as e:

    # 处理Shell命令执行失败(如命令不存在、权限不足)

    print(f"Shell命令执行失败:{e.output},返回码:{e.returncode}")

    return ""

    except ValueError as e:

    print(f"数据解析失败:{str(e)}")

    return ""

    except Exception as e:

    print(f"未知错误:{str(e)}")

    return ""

    # 主逻辑:调用函数并打印结果

    if __name__ == "__main__":

    used_memory = get_and_parse_system_memory()

    if used_memory:

    print(f"系统已用内存:{used_memory}")

    else:

    print("获取内存信息失败")

    优化说明:

  23. 性能优化:用 subprocess.check_output 直接获取 Shell 输出,删除中间文件操作,减少 IO 开销;
  24. 可读性优化:函数封装逻辑,添加注释,结构化解析数据;
  25. 异常处理:捕获命令执行失败、数据解析失败等场景,确保代码稳定。
  26. 10.2 场景二:包含第三方框架的代码优化(如 Python Django、Java Spring Boot)

    10.2.1 需求背景

    新手用框架开发项目(如 Django 开发网站、Spring Boot 开发后端接口),代码未遵循框架规范(如 Django 的 ORM 使用、Spring 的依赖注入),导致性能低、扩展性差。

    10.2.2 待优化代码(Django 视图函数,查询用户数据)
     

    # Django视图函数:查询所有用户,筛选出年龄>18的用户并返回

    from django.http import JsonResponse

    from myapp.models import User

    def get_adult_users(request):

    users = User.objects.all() # 查询所有用户,数据量大时性能低

    adult_users = []

    for user in users:

    if user.age > 18: # Python层面筛选,效率低

    adult_users.append({

    "id": user.id,

    "name": user.name,

    "age": user.age

    })

    return JsonResponse({"adult_users": adult_users})

    问题:查询所有用户后在 Python 层面筛选(数据量大时性能低);无分页(10 万用户时返回数据过大);未处理请求异常(如数据库连接失败)。

    10.2.3 提示词示例

    “请优化以下 Django 视图函数代码(Django 4.2,Python 3.10),具体要求:

  27. 优化维度:性能 + 框架规范;
  28. 上下文信息:
  29. ① 代码用途:Django 视图函数,接收 GET 请求,查询 User 模型中年龄 > 18 的用户,返回 JSON 数据(支持分页,每页 10 条);

    ② 优化要求:用 Django ORM 的 filter 在数据库层面筛选(避免 Python 层面筛选),添加分页(Django Paginator),处理数据库异常;

  30. 输出:优化前后代码、优化说明(框架规范 + 性能优化)。
  31. 待优化代码:

    [粘贴上述 Django 代码]”

    10.2.4 模型输出结果(核心部分)

    优化后代码:

     

    from django.http import JsonResponse

    from django.core.paginator import Paginator, EmptyPage

    from django.db import DatabaseError

    from myapp.models import User

    def get_adult_users(request):

    try:

    # 优化1:遵循Django ORM规范,在数据库层面用filter筛选年龄>18的用户

    # 避免查询所有用户(User.objects.all()),减少数据库查询数据量

    adult_users_queryset = User.objects.filter(age__gt=18).only("id", "name", "age")

    # 优化2:添加分页(每页10条),支持前端传page参数(默认第1页)

    page_num = request.GET.get("page", 1)

    paginator = Paginator(adult_users_queryset, 10) # 每页10条数据

    try:

    current_page_users = paginator.page(page_num)

    except EmptyPage:

    # 处理页码不存在的情况(如请求page=1000,实际只有5页)

    current_page_users = paginator.page(paginator.num_pages)

    # 转换为JSON格式数据

    adult_users_data = [

    {"id": user.id, "name": user.name, "age": user.age}

    for user in current_page_users

    ]

    # 返回分页信息和数据

    response_data = {

    "adult_users": adult_users_data,

    "pagination": {

    "total_users": paginator.count, # 总用户数

    "total_pages": paginator.num_pages, # 总页数

    "current_page": current_page_users.number, # 当前页码

    "page_size": 10 # 每页条数

    }

    }

    return JsonResponse(response_data, status=200)

    except DatabaseError as e:

    # 处理数据库异常(如连接失败、SQL错误)

    return JsonResponse({"error": f"数据库查询失败:{str(e)}"}, status=500)

    except Exception as e:

    # 处理其他未知异常

    return JsonResponse({"error": f"请求处理失败:{str(e)}"}, status=400)

    优化说明:

  32. 框架规范:用 Django ORM 的 filter(数据库层面筛选)和 only(只查询需要的字段),遵循 Django 数据查询最佳实践;
  33. 性能优化:分页减少返回数据量,数据库层面筛选减少数据传输;
  34. 异常处理:捕获数据库异常和分页异常,返回标准 HTTP 状态码,符合接口开发规范。
  35. 十一、提示词优化代码的后续学习方向

    11.1 学习提示词的精细化设计

    11.1.1 核心目标

    从 “能生成优化代码” 进阶到 “生成高质量、贴合需求的优化代码”,比如根据 “代码复杂度” 调整提示词细节(简单代码用简洁提示词,复杂代码用详细提示词)。

    11.1.2 学习方法
  36. 分析优秀提示词模板:研究 PromptBase、GitHub 上的代码优化提示词模板,学习 “如何用最少的文字传递准确需求”;
  37. 尝试变量化提示词:将提示词中的固定内容(如编程语言、优化维度)设为变量,形成 “通用模板”,比如 “优化以下 {{语言}} 代码,优化维度为 {{维度}},上下文信息:{{信息}}”;
  38. 多轮交互优化:若一次优化不满足需求,学习用追问补充需求,如 “之前的优化忽略了分页,请补充 Django 分页功能,每页 20 条数据”。
  39. 11.2 结合代码优化理论,提升提示词针对性

    11.2.1 核心目标

    理解代码优化的底层理论(如时间复杂度、空间复杂度、数据库索引优化),让提示词中的 “优化要求” 更专业、更有针对性。

    11.2.2 学习方法
  40. 入门基础理论:阅读《代码整洁之道》《算法图解》等书籍,了解 “可读性规范”“算法效率” 的基础概念;
  41. 针对性补充提示词:将理论融入提示词,如 “优化这段 SQL 查询代码,要求:1. 分析当前 SQL 的执行计划,添加合适的索引;2. 避免全表扫描(时间复杂度 O (n)),优化为索引查询(O (log n))”;
  42. 验证理论落地:优化后用代码质量工具(如 EXPLAIN 分析 SQL 执行计划)验证优化效果,理解 “理论如何通过代码落地”。
  43. 11.3 探索 AI 与代码优化的深度结合

    11.3.1 核心目标

    了解 AI 在代码优化中的高级应用(如 AI 生成单元测试、AI 检测潜在性能风险),拓展提示词的应用场景。

    11.3.2 学习方向
  44. 提示词 + 单元测试:学习用提示词让模型为优化后的代码生成单元测试,如 “为优化后的 Django 视图函数生成单元测试,覆盖正常查询、分页、数据库异常 3 种场景”;
  45. 提示词 + 性能分析:让模型分析代码的性能风险,如 “分析这段 Java 代码的潜在性能风险(如内存泄漏、死锁),给出优化建议”;
  46. 尝试 AI 代码工具:使用 Copilot X、CodeGeeX 等 AI 代码工具,体验 “实时提示词优化”(边写代码边优化),学习工具的提示词交互逻辑。
  47. 11.4 新手实践建议

  48. 每周固定练习:每周选择 1-2 段自己写的代码,用本文的技巧写提示词优化,对比优化前后的差异;
  49. 记录优化案例:建立 “提示词 - 优化代码” 案例库,记录每次的提示词、优化结果、遇到的问题,定期复盘;
  50. 参与社区交流:在 CSDN、GitHub、Stack Overflow 的 AI 代码优化社区分享自己的案例,学习他人的提示词技巧。
<think>嗯,用户现在想编写一个实用的计算小程序,作为Python新手,可能需要一个清晰的思路和步骤指导。让我先回顾一下之前的对话历史。用户之前询问了学生管理系统的设计思路,我给出了分步指南,包括需求分析、数据结构设计、模块实现等。现在用户转向计算小程序,需要调整之前的思路来适应新的需求。 首先,用户提到参考了站内的引用,其中引用[1]提到使用IPython进行交互式编程,引用[3]提到了计算器项目,引用[4]提到用DevChat辅助编码。这些可能对用户有帮助,但用户现在主要关注的是实用计算小程序的编写。我需要结合这些引用中的有用信息,但也要以用户当前的问题为主。 用户是Python新手,可能需要从基础开始,逐步构建功能。计算小程序的核心功能应包括基本运算、历史记录、错误处理等。可能还需要考虑用户界面,是命令行还是GUI,但作为新手,命令行可能更合适开始。引用[3]中的计算器项目是一个简单例子,但用户需要的是更实用的,可能包含更多功能,比如科学计算或单位转换。 接下来,我需要确定用户的需求是否包含扩展功能,比如科学计算、单位转换或图形化界面。根据用户的问题,他们可能希望有一个比基础计算器更实用的工具,但作为新手,先从简单开始,再逐步扩展更合理。 数据结构方面,计算器可能需要存储运算历史和变量,比如使用字典或列表。异常处理也很重要,避免程序因输入错误而崩溃。引用[4]提到的DevChat可以帮助生成代码,但用户可能需要手动编写来学习,所以需要给出清晰的代码示例和解释。 然后,我需要考虑如何分阶段实现。第一阶段实现基本功能,第二阶段增加科学计算和错误处理,第三阶段添加GUI。这样分阶段可以帮助用户逐步学习,避免一次性面对太多复杂内容。 代码规范方面,建议使用函数模块化,如separate_expression函数处理输入,calculate函数执行计算。历史记录可以用列表存储,每次计算后追加结果。引用[1]提到的IPython可能对调试有帮助,但新手可能暂时不需要,可以暂时不提。 错误处理部分,使用try-except块来捕捉ValueError或ZeroDivisionError,并给出友好提示。科学计算功能可能需要导入math模块,处理平方根、对数等函数。用户可能还喜欢单位转换,比如温度或长度,这可以通过定义转换函数来实现。 在进阶部分,可以考虑使用Tkinter或PyQt创建GUI,或者用pandas处理更复杂的数据。引用[2]提到安装Python解释器,用户可能已经完成,但需要确保环境正确设置。 最后,相关问题需要引导用户深入思考,比如如何处理复杂表达式、增加图形界面、避免浮点误差等。这些问题帮助用户扩展项目,同时巩固知识。 总结:用户需要一个结构清晰的指南,分步骤实现计算小程序,涵盖基础到进阶功能,代码示例易懂,并参考相关引用中的有用信息,如使用DevChat辅助开发,但保持代码简单适合新手学习。</think>以下是针对Python新手开发实用计算小程序的系统化实现方案,结合引用资料与最佳实践: --- ### 一、需求分析与架构设计 #### 核心功能模块 ```mermaid graph LR A[计算核心] --> B[基础运算] A --> C[科学计算] A --> D[单位换算] E[交互界面] --> F[命令行模式] E --> G[GUI模式] H[扩展功能] --> I[历史记录] H --> J[公式存储] ``` #### 技术选型参考 - 基础框架:标准库`math`+`tkinter`(引用[2]环境配置) - 交互增强:使用`input()`或`IPython`交互(引用[1]) - 部署方案:打包为exe或对接微信小程序(引用[5]) --- ### 二、分阶段实现方案 #### 阶段1:基础计算器(控制台版) ```python import math def basic_calculator(): history = [] while True: try: expr = input("输入表达式(输入q退出): ").strip() if expr.lower() == &#39;q&#39;: break # 处理特殊符号 expr = expr.replace(&#39;^&#39;, &#39;**&#39;).replace(&#39;√&#39;, &#39;math.sqrt&#39;) # 安全验证 if any(c not in &#39;0123456789+-*/(). sqrtmath&#39; for c in expr): raise ValueError("包含非法字符") result = eval(expr) history.append(f"{expr} = {result}") print(f"结果: {result:.2f}") except (SyntaxError, ZeroDivisionError, NameError) as e: print(f"计算错误: {str(e)}") except ValueError as ve: print(ve) print("\n计算历史:") for item in history: print(item) ``` #### 关键实现技术 1. **表达式解析** ```python def separate_expression(expr: str) -> list: """分离数字与运算符""" tokens = [] current = &#39;&#39; for char in expr.replace(&#39; &#39;, &#39;&#39;): if char.isdigit() or char == &#39;.&#39;: current += char else: if current: tokens.append(current) current = &#39;&#39; tokens.append(char) if current: tokens.append(current) return tokens ``` 2. **单位换算模块** ```python UNIT_CONVERSION = { &#39;长度&#39;: {&#39;m&#39;: 1, &#39;km&#39;: 1000, &#39;cm&#39;: 0.01}, &#39;温度&#39;: {&#39;c->f&#39;: lambda c: c*9/5+32, &#39;f->c&#39;: lambda f: (f-32)*5/9} } def convert_units(value, from_unit, to_unit, category): ratio = UNIT_CONVERSION[category] return value * ratio[from_unit] / ratio[to_unit] ``` --- ### 三、新手开发路线图 #### 第一阶段:核心功能 1. 实现加减乘除与括号优先级 2. 添加历史记录功能(使用列表存储) 3. 基础错误处理(除零错误、非法字符) #### 第二阶段:增强功能 1. 集成科学计算功能(引用`math`库): ```python def scientific_calc(): print("可用函数: sin, cos, log, sqrt") print("示例: sqrt(25)+sin(30)") ``` 2. 增加单位换算模块(参考引用[3]的输入处理): ```python def unit_conversion_ui(): print("支持转换类型:") for category in UNIT_CONVERSION: print(f"- {category}") ``` #### 第三阶段:界面优化 1. 使用`tkinter`创建GUI界面(引用[2]环境配置): ```python import tkinter as tk class CalculatorApp: def __init__(self): self.window = tk.Tk() self.entry = tk.Entry(self.window, width=40) self.entry.pack() btn = tk.Button(self.window, text="计算", command=self.calculate) btn.pack() def calculate(self): try: result = eval(self.entry.get()) self.show_result(result) except Exception as e: self.show_error(str(e)) ``` --- ### 四、关键问题解决方案 #### 1. 浮点数精度处理 ```python from decimal import Decimal, getcontext getcontext().prec = 6 # 设置计算精度 def precise_calc(expr): expr = expr.replace(&#39;÷&#39;, &#39;/&#39;).replace(&#39;×&#39;, &#39;*&#39;) return eval(expr, {&#39;__builtins__&#39;: None}, {&#39;Decimal&#39;: Decimal}) ``` #### 2. 安全增强方案 ```python ALLOWED_CHARS = set(&#39;0123456789+-*/.() &#39;) ALLOWED_FUNCTIONS = {&#39;sqrt&#39;, &#39;sin&#39;, &#39;cos&#39;} def safe_eval(expr): if any(c not in ALLOWED_CHARS for c in expr): raise SecurityError("检测到非法字符") # 使用抽象语法树分析 import ast tree = ast.parse(expr, mode=&#39;eval&#39;) for node in ast.walk(tree): if isinstance(node, ast.Call): func_name = node.func.id if func_name not in ALLOWED_FUNCTIONS: raise SecurityError(f"禁止调用函数: {func_name}") return eval(expr, {&#39;__builtins__&#39;: None}, {&#39;sqrt&#39;: math.sqrt}) ``` --- ### 五、进阶开发建议 1. **对接AI辅助编程** 使用DevChat生成单元测试代码(引用[4]): ```python # 示例:生成测试用例 def test_addition(): assert calculate(&#39;2+3&#39;) == 5 assert calculate(&#39;0.1+0.2&#39;) == pytest.approx(0.3) ``` 2. **性能优化技巧** ```python # 使用缓存加速常用计算 from functools import lru_cache @lru_cache(maxsize=128) def cached_calc(expr: str) -> float: return safe_eval(expr) ``` 3. **部署方案** - 使用`pyinstaller`打包为exe文件 - 通过Flask框架构建Web版计算器 - 对接微信小程序(引用[5]的远程调用方案) --- ### 相关问题 1. [如何处理用户输入的复杂数学表达式?] 2. [如何为计算器增加图形界面?] 3. [Python中浮点数运算精度问题如何解决?] 4. [如何防止计算器程序被恶意注入代码?]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值