大模型的赛道逐渐清晰,主要分为基座和应用两派,且两派的特点鲜明,下面我们分开讲讲。
基座赛道上,成为有钱人和巨头的游戏,主要玩家分布在明星创业公司,顶尖大厂,和不差钱的国央企。前两者不分伯仲,不过明星创业公司的人才密度相对更高一点。
基座赛道上,目前各家还保持着高涨的投入,主要原因是OpenAI给出了一个指路明灯,与第一名还存在明显差距,并且这个差距是可度量的,大家相信持续不遗余力投入,就有希望的迎头赶上。但客观情况是竞技场总榜前10想进去都十分不容易,更别提gpt4o这种明显存在技术代差的东西,基座还任重道远。
基座赛道的分工更细,有强烈的工业化大兵团作战的特点,招聘的画像也非常细分,代码,推理,数学等,恨不得一个能力标签一个负责人,再搭建各自的数据,训练,对齐团队。
基座赛道算法方向上,infra方向技术含量更高,人也更值钱,需要CS科班底子融合算法背景,门槛相对较高。但操盘训练的,主要工作精力在洗数据,配数据,训练技巧上,相对infra没太有硬性门槛,更经验驱动。infra方向,靠技术实力说话。训练和对齐方向,靠实验量和实验认知说话。
但是,训练方向的需求量更大,所以从供给分析的角度,所以相对容易找工作一点。
再说应用赛道,除了大模型本身,现在市面上还没有太成功的C端落地应用,去年比较火热的几个方向,角色扮演,characterAI创始人携团队跑路。众多电商助手,也没有做出点什么门道。反而最近的搜索产品,把大模型当成效果不错的生成模型来用,卡着多轮的能力不开放,简化技术难度,反而看着有活下来的苗头。
当然,也不是都不太行,大模型写个代码,翻译总结个文章,还是挺不错的。然后做的比较好的有,各种非助手的形态,互联网C端的比如评论区机器人,视频总结摘要,文章总结,搜索总结,从用户量维度看,算是相对成功,也能在很多APP上看到全量开放。虽然这些应用看起来都没那么炫酷,也很简单。
这些应用共有的特点有,**接近基座原生能力,场景数据丰富,或者场景数据方便构造。**在落地应用上,离原生能力越远,需要大模型能力越高,需要越多的场景优质数据。
应用方向上,目前看