刚刚!Stable diffusion 2024升级加强版终于来了!(无需安装,解压即用)

要说AI绘画圈最出圈的工具

那妥妥的就Stable diffusion

这不前段时间2024升级加强版来咯!

不仅生成图片还能生成视频\数字人等

而且无需安装,直接解压就能用

(在此要感谢秋葉aaaki大佬的分享!)

在这里插入图片描述
Stable Diffusion 是以文本生成图像的 AI 工具,不仅可以在线使用,还能部署在家用电脑上的 AI 绘图工具,可以在大部分后期电脑下运行,并在短短几秒钟内生成清晰度高,还原度佳的 AI 图片,无需预处理和后处理!

在这里插入图片描述
这里直接将该软件分享出来给大家吧~

在这里插入图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

### 使用 Stable Diffusion 和 ControlNet 进行图像扩展 为了利用 Stable Diffusion 和 ControlNet 实现高质量的图像扩展,以下是详细的说明: #### 准备工作 确保已经按照官方指南完成以下操作: - 安装 `sd-webui-controlnet` 插件[^1]。 - 下载所需的 ControlNet 模型,并将其放置于 `/models/ControlNet` 文件夹下[^2]。 插件安装完成后,在 WebUI 中可以找到对应的选项卡用于配置和运行扩图功能。 --- #### 控制模式设置 在使用 ControlNet 的过程中,需注意以下几个关键参数: - **控制模式选择**:推荐优先选用 `ControlNet` 作为主要控制器[^3]。 - **画面缩放模式**:通常建议选择“缩放并填充”,以便更好地适配新尺寸下的内容生成需求。 这些基础设定能够帮助保持原图风格的一致性和连贯性。 --- #### 输入目标尺寸 当准备调整原始图片大小时, - 可手动指定期望的高度与宽度数值; - 或者借助界面工具——点击待处理素材右下角特定图标(即最右侧的那个),自动提取当前选中图形的实际分辨率数据填入对应字段内。 此步至关重要,因为它决定了最终输出作品的整体布局比例以及细节呈现效果。 --- #### 提示词优化技巧 为了让生成结果更加贴近预期设想,在提交渲染请求之前务必精心设计 Prompt 文本字符串。特别是涉及复杂场景或者特殊环境描述的时候,应该尽可能详尽地补充关于背景要素的相关线索。例如,“黄昏时刻站在海边沙滩上的孤独人物剪影”。 --- #### 开始执行任务 一切准备工作就绪之后就可以按下启动键等待计算结束返回成品啦! 下面是 Python 脚本形式展示如何调用 API 接口来自动化上述流程的一个简单例子: ```python import requests from PIL import Image from io import BytesIO def expand_image_with_controlnet(image_path, prompt, width=768, height=512): url = 'http://localhost:7860/sdapi/v1/txt2img' # 假设本地服务端口号为7860 with open(image_path, "rb") as image_file: base64image = base64.b64encode(image_file.read()).decode('utf-8') payload = { "init_images": [base64image], "prompt": prompt, "width": width, "height": height, "controlnet_units": [{ "enabled": True, "module": "canny", "model": "control_canny-fp16", }] } response = requests.post(url, json=payload) r = response.json() for i in r['images']: image = Image.open(BytesIO(base64.b64decode(i.split(",",1)[0]))) return image expanded_img = expand_image_with_controlnet('./input.jpg', 'A beautiful landscape under sunset') expanded_img.save("./output_expanded.png") ``` > 注意:以上代码仅为示意用途,请依据实际部署情况修改相应路径和服务地址等信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值