
线性代数
文章平均质量分 89
Code Writers
全栈领域新星创作者,2023年博客之星Top95,阿里云专家博主、星级博主、技术博主,2022博客之星入围,6月城市(成都)之星Top8,2023新星计划潜力新星。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
高等数学:矩阵
矩阵AB的秩不能超过矩阵A的秩(由结论“如果向量组1可由向量组2线性表出,那么向量组1的秩不超过向量组2的秩”得)一句话明白:矩阵A与B的乘积C的第i行第j列的元素等于第一个矩阵A的第一行与第二个矩阵B的第一列的对应元素的乘积。同理,将A写成列向量形式,也能得到矩阵AB的秩不能超过B的秩。即矩阵AB的行向量可以由矩阵的B的行向量线性表出,所以。,即矩阵乘积的行列式等于它因式的行列式的乘积。其中矩阵B是矩阵A的逆矩阵,记作。推论:如果矩阵A,B可逆,那么。矩阵A的转置就是将A的行列互换。原创 2023-08-24 15:31:58 · 1949 阅读 · 0 评论 -
高等数学:线性代数-第五章
这种只含平方项的二次型,称为二次型的标准型(或法式)。称为二次型 f 的矩阵,二次型 f 称为对称矩阵。则称矩阵 \bm A 为正交矩阵,简称正交阵。为对角矩阵,这样的过程称为矩阵对角化。,则称 f 为正定二次型,并称对称矩阵。,则称 f 为负定二次型,并称对称矩阵。标准型 对于二次型,若有可逆的线性变换。Cauchy-Schwarz不等式。都是 n 阶矩阵,若有可逆矩阵。的特征方程的 k 重根,则矩阵。为实数时, f 称为实二次型。,则该标准型称为二次型的规范型。是 n 阶矩阵,若有可逆矩阵。原创 2023-08-24 11:07:22 · 184 阅读 · 0 评论 -
高等数学:线性代数-第四章
则称向量组 A_0 是向量组 A 的一个最大线性无关组,简称最大无关组, r 称为向量组 A 的秩,记作。,若 B 中的每个向量都能由向量组 A 线性表示,则称向量组 B 能由向量组 A 线性表示。向量组等价 给定向量组 A 和 B ,如果它们能互相线性表示,则称这两个向量组等价。就称为向量空间 V 的一个基, r 称为向量空间 V 的维数,并称 V 为r 维向量空间。向量组的秩 给定向量组 A ,如果能在 A 中选出 r 个向量。定理 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩。原创 2023-08-24 10:53:24 · 292 阅读 · 0 评论 -
高等数学:线性代数-第三章
中存在一个不为零的 r 阶子式,且所有 r+1 阶子式全为零,那么数 r 称为矩阵。把某一行(列)所有元的 k 倍加到另一行(列)对应的元上去,记作。元非齐次线性方程组解的判定 n 元非齐次线性方程组。元齐次线性方程组解的判定 n 元齐次线性方程组。中,任取 k 行 k 列,位于这些行列交叉处的。中所处的位置次序而得的 k 阶行列式,称为矩阵。矩阵的初等变换 下面三种变换称为矩阵的初等变换。乘某一行(列)中的所有元,记作。有无穷多解的充分必要条件是。有非零解的充分必要条件是。有惟一解的充分必要条件是。原创 2023-08-23 15:50:23 · 643 阅读 · 0 评论 -
高等数学:线性代数-第二章
伴随矩阵 行列式 | \bm{A} | 的各个元素的代数余子式 A_{ij} 所构成的如下的矩阵。不全为零时,称该方程组为n 元非齐次线性方程组,当。特别地,当 m = n 时,该矩阵叫做n 阶方阵。叫做 n 阶单位矩阵,简称单位阵,记作。非奇异矩阵 可逆矩阵叫做非奇异矩阵。的系数矩阵 A 的行列式不等于零,即。奇异矩阵 不可逆矩阵叫做奇异矩阵。叫做对角矩阵,简称对角阵,记作。的伴随矩阵,简称伴随阵,记作。逆矩阵 对于 n 阶矩阵。,如果有一个 n 阶矩阵。的逆矩阵,简称逆阵,记作。原创 2023-08-23 15:42:12 · 443 阅读 · 0 评论 -
高等数学:线性代数-第一章
上(下)三角行列式 主对角线以下(上)的元素都为 0 的行列式叫做上(下)三角行列式;性质3 行列式的某一行(列)中的所有元素都乘同一数 k ,等于用数 k 乘此行列式,即。性质6 把行列式 D 的某一行(列)的各元素的 k 倍加到另一行(列),行列式不变,即。全排列 把 n 个不同的元素排成一列,叫做这 n 个元素的全排列,简称排列。奇排列与偶排列 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列。性质5 若行列式 D 的某一行(列)的元素都是两数之和,则行列式 D 满足。原创 2023-08-23 15:29:53 · 583 阅读 · 0 评论