Slingshot | 细胞分化轨迹的这样做比较简单哦!~(二)

本文介绍了如何使用slingshot包进行细胞分化轨迹分析,包括构建PseudotimeOrdering、可视化细胞状态变化和处理多轨迹。作者通过实例演示了如何解决PCA与FindMarkers结果不符的问题,以理解细胞状态的连续过渡过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1写在前面

今天又值班了,你没有听错!! 🥲

值班了!!!!😅

最近自己的确不太在状态,做事情有极强的拖延症,要振奋起来啦,man!~😣

BTW,大家最近有没有什么好听的歌推荐推荐啊,曲荒了!~😭

好吧,今天的教程接上次的继续,依然是slingshot。🤪


上次有小伙伴问做这个分析有什么用???🤨

好吧,比如说你做了PCA发现有2群细胞差异还挺明显的,但是用FindMarkers就是找不到差异基因。🥲

可能这2群是同一群细胞,只是处于不同的分化状态而已,两者之间并没有明显的差异。🧐

However,两者之间存在一个平滑的过渡,通过逐渐的转录组变化来改变细胞状态。😏

所以做分化轨迹分析可以了解细胞是如何改变细胞状态以及细胞命运的决定机制。😚

2用到的包

rm(list = ls())
library(slingshot)
library(tidyverse)
library(uwot)
library(mclust)
library(RColorBrewer)
library(grDevices)

3示例数据

data("slingshotExample")
rd <- slingshotExample$rd
cl <- slingshotExample$cl

dim(rd)
length(cl)
alt

4构建PseudotimeOrdering

这里我们要用到示例二了,这里我们直接使用降维文件聚类文件进行构建咯。🤒

lin1 <- getLineages(rd, cl, start.clus = '1')
lin1
alt

5可视化

plot(rd, col = brewer.pal(9,"Set1")[cl], asp = 1, pch = 16)
lines(SlingshotDataSet(lin1), lwd = 3, col = 'black')
alt

6指定cluster为endpoint

这里我们制定Cluster 3作为endpoint。🧐

这样做是有一定的好处的,可以防止已知的细胞阶段被归类为瞬时状态。😬

lin2 <- getLineages(rd, cl, start.clus= '1', end.clus = '3')

plot(rd, col = brewer.pal(9,"Set1")[cl], asp = 1, pch = 16)
lines(SlingshotDataSet(lin2), lwd = 3, col = 'black', show.constraints = T)
alt

7创建平滑曲线

crv1 <- getCurves(lin1)
crv1
alt

8可视化

plot(rd, col = brewer.pal(9,"Set1")[cl], asp = 1, pch = 16)
lines(SlingshotDataSet(crv1), lwd = 3, col = 'black')
alt

9多轨迹的处理

这里的话我们要设置omega = TRUE。🥰

rd2 <- rbind(rd, cbind(rd[,2]-12, rd[,1]-6))
cl2 <- c(cl, cl + 10)
pto2 <- slingshot(rd2, cl2, omega = T, start.clus = c(1,11))

plot(rd2, pch=16, asp = 1,
col = c(brewer.pal(9,"Set1"), brewer.pal(8,"Set2"))[cl2])
lines(SlingshotDataSet(pto2), type = 'l', lwd=2, col='black')
alt

拟合完之后,再分别处理每个trajectory,拟合主线。😂

plot(rd2, pch=16, asp = 1,
col = c(brewer.pal(9,"Set1"), brewer.pal(8,"Set2"))[cl2])
lines(SlingshotDataSet(pto2), lwd=2, col='black')
alt

alt
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

alt

alt

alt

本文由 mdnice 多平台发布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值