基于UNET算法的农业遥感图像分割

一. 导包YOLOv8

二. 导入所需要的库

matplotlib
os
numpy
torch
PIL
torchvision
ultralyticks

三. UNet 模型定义​

   UNet 是一种常用于语义分割的卷积神经网络(CNN),代码中定义了:        

  1.  ​DoubleConv​:两次卷积 + BN + ReLU。
  2. Down​:下采样(MaxPool + DoubleConv)。
  3. Up​:上采样(转置卷积 + 跳跃连接)。
  4. UNet​:完整的 UNet 结构(3层下采样 + 3层上采样)

 四. AgricultureAnalyzer 类​

        核心分析类,负责:

  1. ​加载 YOLOv8 和 UNet 模型​​。
  2. ​执行目标检测和语义分割​​。
  3. ​可视化结果​​。

. main() 主程序​

  1. 处理多张图片​​,并保存结果。
  2. ​打印检测目标数量​​ 和 ​​土地分类占比​​。
  • 六. 代码功能总结        

    • 功能实现方式
      ​目标检测​YOLOv8 检测农机、农作物等
      ​语义分割​UNet 分类土地类型(土壤、植被、水域等)
      ​可视化​Matplotlib 绘制检测框 + 分割结果
      ​统计信息​计算各类土地占比
    • 七.结果

### 遥感影像中农田分割的技术方法 #### 传统方法 传统的遥感图像分割技术通常依赖于基于阈值的方法、区域生长技术和聚类算法。这些方法的核心在于分析像素的颜色和纹理特性,从而完成初步的分类任务。然而,在面对复杂的自然场景时,这类方法可能无法提供足够的精度[^1]。 #### 深度学习方法 随着深度学习技术的发展,尤其是卷积神经网络(CNN)的应用,遥感图像分割领域取得了显著进步。通过训练深度学习模型来识别并学习地表特征的复杂模式,可以实现更高精度和效率的分割操作。这种方法能够有效应对高分辨率遥感图像带来的挑战,并在多种应用场景下表现出优越性能。 对于具体实现而言,如果希望使用深度学习框架针对自定义数据集进行训练,则可以从以下几个方面入手: - **数据准备**:获取高质量的数据集至关重要。例如,存在专门用于农田地块分割的公开数据集,它们不仅包含大量标注好的遥感图片,还支持不同类型的地理信息提取需求[^2]。 - **模型选择与训练**:当涉及到目标检测而非单纯的语义分割时,可以选择像 YOLOv5 这样的高效实时物体探测器作为基础架构来进行定制化开发。此过程涉及调整超参数、设计损失函数以及监控验证指标等多个环节[^3]。 下面展示了一个简单的 Python 脚本片段,演示如何加载预训练权重文件并对新输入执行推理预测: ```python import torch from PIL import Image import numpy as np def load_model(weights_path='yolov5s.pt'): model = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_path) return model if __name__ == "__main__": img = Image.open("test_image.jpg") # 替换为您的测试图片路径 model = load_model() results = model(img) result_df = results.pandas().xyxy[0] print(result_df[['xmin','ymin','xmax','ymax']]) ``` 上述代码展示了如何利用 PyTorch Hub 加载已有的 YOLOv5 权重,并对单张图片实施边界框定位输出。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值