一. 导包YOLOv8
二. 导入所需要的库
matplotlib |
os |
numpy |
torch |
PIL |
torchvision |
ultralyticks |
三. UNet 模型定义
UNet 是一种常用于语义分割的卷积神经网络(CNN),代码中定义了:
-
DoubleConv
:两次卷积 + BN + ReLU。 -
Down
:下采样(MaxPool +DoubleConv
)。 -
Up
:上采样(转置卷积 + 跳跃连接)。 -
UNet
:完整的 UNet 结构(3层下采样 + 3层上采样)
四. AgricultureAnalyzer
类
核心分析类,负责:
- 加载 YOLOv8 和 UNet 模型。
- 执行目标检测和语义分割。
- 可视化结果。
五. main()
主程序
- 处理多张图片,并保存结果。
- 打印检测目标数量 和 土地分类占比。
-
六. 代码功能总结
-
功能 实现方式 目标检测 YOLOv8 检测农机、农作物等 语义分割 UNet 分类土地类型(土壤、植被、水域等) 可视化 Matplotlib 绘制检测框 + 分割结果 统计信息 计算各类土地占比 -
七.结果
-