【冗余路径——求边双连通分量】

题目

分析

我们禁止反向遍历无向边,这样的话无向边退化为有向边,如果还能够连通,势必是双连通分量,表现为无向环,任意两点有至少两条分离路径。

于是求双连通分量,缩点。

得到一棵树,通过思考发现至少需要如下数量边就可以使得这棵树整体变为双连通分量。 

 

注意没有横向边,不用in_stk,直接认定返祖边,只要不是走反向边就行: 

代码

#include <bits/stdc++.h>
using namespace std;

const int N = 5010;
const int M = 20010; //这里不用真的重建图,主要是知道谁是叶子节点,所以不考虑重建

int h[N], e[M], ne[M], idx;
int dfn[N], low[N], id[N], cnt, tot;
int stk[N], top;
bool is_bridge[M];//这里不需要in_stack,因为没有横向边
int n, m, d[N];

void add(int a, int b)  // 添加一条边a->b
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void tarjan(int u, int ine)
{
    dfn[u] = low[u] = ++tot;
    stk[++top] = u;
    for(int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if(!dfn[j])
        {
            tarjan(j, i);
            low[u] = min(low[u], low[j]);
            if(low[j] > dfn[u])
                is_bridge[i] = is_bridge[i^1] = 1;
        }
        else if(i != (ine ^ 1))
            low[u] = min(low[u], dfn[j]);
    }
    
    if(dfn[u] == low[u])
    {
        ++cnt;
        int y;
        do{
            y = stk[top--];
            id[y] = cnt;
        }while(y != u);
    }
}
int main()
{
    memset(h, -1, sizeof h);
    scanf("%d%d", &n, &m);
    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
        add(b, a);
    }
    
    tarjan(1, -1);
    
    for(int i = 0; i < idx; i++)
        if(is_bridge[i])
            d[id[e[i]]]++;
    
    int t = 0;
    for(int i = 1; i <= cnt; i++)
        if(d[i] == 1)
            t++;
            
    printf("%d", t + 1 >> 1);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值