
NLP面经
文章平均质量分 87
L_cl
没有天赋,那就重复
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【NLP 面试准备 —— 一定上岸!】
一切都会好的,我一直相信!—— 25.4.2模型中Q、K、V参数①情感分析问题中,使用微调后,对具有修辞文本的情感判断准确度较低问题改进②文本分类任务中,准确率下降且训练时间增加问题改进③命名实体识别(NER)中,面对模型准确率降低且泛化能力较差问题改进④文本生成任务中,生成文本逻辑不连贯与缺乏多样性问题改进⑤只出现一次的数字。原创 2025-04-02 15:54:13 · 397 阅读 · 0 评论 -
【NLP 面经 1 Transformer模型Q、K、V参数的作用】
在Transformer架构中,Query向量代表当前正在处理的词(或位置)在句子中的角色或意图。它用于从句子的其他部分查找相关信息,即模型需要“查询”的内容。Key向量代表句子中每个词的重要性或相关性。它与Query进行比较,计算相似度得分,以确定哪些词对当前处理的词(Query)最重要。Value向量包含句子中每个词的实际信息内容。它根据Query和Key的相似度得分进行加权求和,生成当前词的输出表示。原创 2025-03-24 21:01:39 · 455 阅读 · 0 评论 -
【NLP 面经 2】
请从预训练模型特性、微调数据以及特征工程这三个方面,分析可能导致该问题的原因,并提出相应的改进策略。在命名实体识别(NER)任务中,当面对跨领域的文本数据时,你所训练的模型识别准确率大幅降低,且模型泛化能力较差。在一个整数数组里找出仅出现一次的元素,而数组中的其他元素均出现三次。先对数组进行排序,排序之后,相同的元素会相邻排列,这样就可以通过比较相邻元素来找出那个只出现一次的元素。使用位运算来解决在数组中找出只出现一次的元素(其余元素均出现三次)的问题。其核心思想是利用两个变量。原创 2025-03-31 22:11:52 · 956 阅读 · 1 评论 -
【NLP 面经 3】
请你阐述一下 Transformer 架构中多头自注意力机制(Multi - Head Self - Attention)的工作原理,以及它相比传统循环神经网络(RNN)在处理长序列文本时的优势。另外,假设在实际应用中,你发现基于多头自注意力机制的模型出现了过拟合现象,你会从哪些方面进行改进?在命名实体识别(NER)任务中,你使用基于循环神经网络(RNN)的模型,发现模型对嵌套实体和长文本中的实体识别效果不佳。,其中包含由空格分隔的单词。中每个单词进行反转,然后再将反转后的单词组合成一个新的字符串并返回。原创 2025-03-31 22:22:25 · 815 阅读 · 0 评论 -
【NLP 面经 4】
一、CNN情感分析改进一、CNN情感分析改进在情感分析任务中,你使用基于卷积神经网络(CNN)的模型。模型在训练集上表现良好,但在测试集上准确率较低,尤其是对长文本的情感分析效果较差。请从模型架构、数据处理和训练方法三个方面分析可能的原因,并提出改进措施。原创 2025-04-01 11:10:06 · 989 阅读 · 0 评论 -
【NLP 面经 5】
文本摘要任务中,你使用基于序列到序列(Seq2Seq)模型,并结合注意力机制。然而,生成的摘要存在信息遗漏、重复以及可读性差的问题。请从模型架构、训练数据和生成策略这三个角度,分析产生这些问题的可能原因,并提出相应的改进措施。原创 2025-04-02 15:46:59 · 964 阅读 · 0 评论 -
【NLP 面经 6】
在自然语言处理的文本摘要任务中,你使用基于 Transformer 的生成式模型。生成的摘要出现信息重点把握不准、关键信息遗漏,并且在生成较长文本的摘要时,结构不清晰、逻辑连贯性。原创 2025-04-08 21:37:50 · 795 阅读 · 1 评论 -
【NLP 面经 7 常见transformer面试题】
多头注意力机制使得模型能够并行处理信息的不同方面,每个头可以专注于输入序列的不同位置或特征,从而捕捉更丰富、更细腻的上下文依赖。点乘在计算复杂度上与加法相似,但在效果上,点乘能够更好地捕捉向量间的相似度,因为它考虑了元素级别的乘积,这在数学上等价于内积,可以衡量两个向量的“方向”一致性。Decoder的多头自注意力机制在训练时需要加入“未来遮挡”(sequence mask),确保在生成当前位置的输出时,模型只能看到过去的位置信息,不能看到未来的信息,符合自然语言的生成逻辑,避免信息泄露。原创 2025-04-05 21:07:36 · 1216 阅读 · 0 评论 -
【NLP 面经 8】
模型在处理含有隐喻、讽刺等复杂语言表达的文本时,情感判断准确率较低,并且在处理长文本时,性能下降明显。请从模型架构、训练数据和超参数调整三个方面分析可能的原因,并提出相应的改进措施。模型生成的文本有时会出现逻辑跳跃、连贯性差的问题,并且在生成多样化内容时,难以平衡多样性与合理性。请从模型架构、训练数据和生成策略这三个方面分析可能的原因,并提出相应的改进措施。计算向量或矩阵的范数(如 L1、L2、无穷范数),支持按行或列计算,适用于数据归一化或相似度计算。学习数据的统计特征(如词频、IDF 值),再通过。原创 2025-04-08 22:19:25 · 946 阅读 · 2 评论 -
【NLP 面经 9 逐层分解Transformer】
1.Transformer 与 RNN 不同,可以比较好的并行训练。2.Transformer 本身是不能利用单词的顺序信息的。因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。3.Transformer 的重点是 Self-Attention 结构,其中用到的 Q、K、V 矩阵通过输出进行线性变换得到。原创 2025-04-09 17:52:36 · 1857 阅读 · 0 评论 -
【NLP 面经 10 大模型微调的七种方法】
方法,我们无需直接修改模型现有的大量权重,相反,只需在模型的关键部分引入低秩矩阵,并通过这些矩阵的乘积来进行有效的权重调整。在P-Tuning中,LSTM模型的参数可以在多个任务之间共享,这提高了模型的泛化能力,并减少了针对每个单独任务的训练需求。而在提示调整中,每个任务通常都有其独立的虚拟标记嵌入,这可能限制了跨任务泛化的能力。这样,在模型微调时,可训练的参数量增加了,P-Tuning v2在应对复杂的自然语言理解(NLU)任务和小型模型方面,相比原始P-Tuning具有更出色的效能。原创 2025-04-17 10:39:16 · 964 阅读 · 0 评论