LeetCode-双指针-盛最多水的容器

618224d51d66b92b423588150f25f3a7-1746706818078-1-1746790482186-1-1746797747208-4

LeetCode-双指针-盛最多水的容器

✏️ 关于专栏:专栏用于记录 prepare for the coding test


📝 盛最多水的容器

🎯题目描述

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0)(i, height[i]) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。

**说明:**你不能倾斜容器。

🔗题目链接:盛最多水的容器

🔍 输入输出示例

示例 1:

img
输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]
输出:1

🧩题目提示

  • n == height.length
  • 2 <= n <= 105
  • 0 <= height[i] <= 104

🧪枚举法

暴力枚举法
既然要求两条线构成的最大容积,那就计算这些线两两构成的容积大小,以得到最大的容积。这个方法只需要两层for循环即可。但这个算法的时间复杂度过高,最终会导致超时。

class Solution {
public:
    int maxArea(vector<int>& height) {
        int maxCap = 0;
        for(int i = 0; i < height.size(); i++)
        {
            for(int j = i + 1; j < height.size(); j++)
            {
                int capacity = min(height[i], height[j]) * (j - i);
                maxCap = max(maxCap, capacity);
            }
        }
        return maxCap;
    }
};

🧪双指针

💡思路

我们需要找出两条线段,使得它们之间形成的容器能够容纳最多的水。容积的计算公式为:

容积 = (右指针 - 左指针) × min(height[左], height[右])

暴力法 是枚举所有组合,时间复杂度为 O(n²),不可接受。
优化策略:使用双指针,即:

  1. 初始化两个指针 leftright,分别指向数组的两端。
  2. 计算当前容器的面积 area = (right - left) * min(height[left], height[right])
  3. 为了找到更大的面积,移动较短的那一边的指针,因为这是面积增大的唯一可能。
  4. 注意:当左右两边高度相等时候,需左右指针同时移动。
  5. 每次移动后重新计算面积并更新最大值。
  6. 直到 left >= right,结束循环。
image-20250509212656206

image-20250509212747232

image-20250509211503966

image-20250509212608228

image-20250509212011396 image-20250509212103822
class Solution {
public:
    int maxArea(vector<int>& height) {
        int left = 0;
        int right = height.size() - 1;
        int area = area = (right - left) * min(height[left],height[right]);;
        while(left < right){
            if((right - left) * min(height[left],height[right]) > area)
            area = (right - left) * min(height[left],height[right]);
            if(height[left] < height[right]) left++;
            else if(height[left] > height[right]) right--;
            else{
                left++;
                right--;
            }
        }
        return area;
    }
};
⏱️ 复杂度分析
项目复杂度
时间复杂度O(n)
空间复杂度O(1) 原地操作

🌟 总结与易错点

✅ 核心知识点
双指针思想(Two Pointers)
  • 双指针是一种常见的线性扫描技巧,适用于在有序结构上进行区间收缩、滑动窗口等操作。

  • 本题用双指针分别从数组两端向中间推进,避免了穷举所有组合(暴力 O(n²))的低效。

  • 非零元素交换顺序错乱;

  • 不清楚原地操作的含义,使用辅助数组(违反题意);

  • 忘记处理全为 0 或全为非 0 的边界情况。

贪心思想的局部决策
  • 每次比较 height[left]height[right],只移动较小的那一边,因为移动较大的一边不会让面积变大。
  • 这个决策是贪心的 —— 每次尝试“可能变大的方向”,排除不可能提升面积的选择。

❌ 忽略两边相等时应双指针同时移动,导致错过最大面积
❌ 忘记更新最大值(只更新指针,不更新 area)
❌ 使用暴力法,时间复杂度过高
d1fded34d21c16a44c687a112865ab0-1727508219022-1-1742981758298-1-1743052895607-3-1746707028431-7-1746790482186-3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值