一、强化学习
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它主要涉及如何让计算机在环境中通过试错来学习行为策略,以达到某种目标。这里的“环境”通常是指一个可以观察到的、并且与智能体(agent,即学习的主体)互动的系统。智能体通过与环境的交互获得反馈(奖励或惩罚),并根据反馈来调整自己的行为。
主要组成
- 智能体(Agent):执行操作的主体,例如机器人、虚拟角色或软件程序。
- 环境(Environment):智能体所处并进行交互的外部世界。
- 状态(State):环境在某一时刻的具体情况。
- 动作(Action):智能体在给定状态下可以选择的行为。
- 奖励(Reward):智能体执行动作后,环境给予的反馈,用以衡量动作的好坏。
学习过程
强化学习的核心是学习一个策略(Policy),即从当前状态到采取的动作的映射。智能体的目标是最大化长期累积的奖励。这通常涉及到以下几个步骤:
- 探索(Exploration):智能体尝试新的动作以发现有用的信息。
- 利用(Exploitation):智能体利用已知信息来最大化即时奖励。
- 学习策略(Learning Policy):根据奖励来调整策略,使得长期累积的奖励最大化。
算法
强化学习的算法可以大致分为三类:
- 基于价值的方法(Value-Based):通过学习每个状态的价值函数,即未来可以获得的预期奖励,来决定采取的动作。代表算法有Q学习(Q-learning)和时序差分(TD)学习。
- 基于策略的方法(Polic