机器学习之强化学习(mdp 马尔可夫决策过程详解)

一、强化学习

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它主要涉及如何让计算机在环境中通过试错来学习行为策略,以达到某种目标。这里的“环境”通常是指一个可以观察到的、并且与智能体(agent,即学习的主体)互动的系统。智能体通过与环境的交互获得反馈(奖励或惩罚),并根据反馈来调整自己的行为。

主要组成
  1. 智能体(Agent):执行操作的主体,例如机器人、虚拟角色或软件程序。
  2. 环境(Environment):智能体所处并进行交互的外部世界。
  3. 状态(State):环境在某一时刻的具体情况。
  4. 动作(Action):智能体在给定状态下可以选择的行为。
  5. 奖励(Reward):智能体执行动作后,环境给予的反馈,用以衡量动作的好坏。
学习过程

强化学习的核心是学习一个策略(Policy),即从当前状态到采取的动作的映射。智能体的目标是最大化长期累积的奖励。这通常涉及到以下几个步骤:

  • 探索(Exploration):智能体尝试新的动作以发现有用的信息。
  • 利用(Exploitation):智能体利用已知信息来最大化即时奖励。
  • 学习策略(Learning Policy):根据奖励来调整策略,使得长期累积的奖励最大化。
算法

强化学习的算法可以大致分为三类:

  1. 基于价值的方法(Value-Based):通过学习每个状态的价值函数,即未来可以获得的预期奖励,来决定采取的动作。代表算法有Q学习(Q-learning)和时序差分(TD)学习。
  2. 基于策略的方法(Polic
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值