二叉树的深度是指从根节点到叶子节点的最长路径上的节点数。
二叉树的高度是指从该节点到叶子结点的最长简单路径边的条数。
一、最大深度
最大深度是指从根节点到最远叶子节点的最长路径上的节点数。
//递归法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
return getdepth(root);
}
public int getdepth(TreeNode root){
if(root==null)return 0;
int rdepth=getdepth(root.right);
int ldepth=getdepth(root.left);
int depth=Math.max(rdepth,ldepth)+1;
return depth;
}
}
二、最小深度
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
//递归法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minDepth(TreeNode root) {
return getdepth(root);
}
public int getdepth(TreeNode root){
if(root==null)return 0;
int rdepth=getdepth(root.right);
int ldepth=getdepth(root.left);
if(root.left==null&&root.right!=null)return rdepth+1;//左为空,右不为空,说明此时不是最近叶子结点
if(root.left!=null&&root.right==null)return ldepth+1;//左不为空,右为空,说明此时不是最近叶子结点
int depth=Math.min(rdepth,ldepth)+1;
return depth;
}
}
三、平衡二叉树
定义:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return getHeight(root)==-1?false:true;
}
public int getHeight(TreeNode root){
if(root==null)return 0;
int rheight=getHeight(root.right);
if(rheight==-1)return -1;
int lheight=getHeight(root.left);
if(lheight==-1)return -1;
return Math.abs(rheight-lheight)>1?-1:1+Math.max(rheight,lheight);
}
}