LCA(最近公共祖先)(倍增 + tarjan)

LCA(最近公共祖先)(倍增 + tarjan)

LCA:

​ LCA(Least Common Ancestors),即最近公共祖先。

​ 祖先结点:从一个结点出发,一直往上走,直至根节点,这条路上所有的结点都是该结点的祖先结点。所以自己也是自己的祖先。

​ 举个例子:对于图中3、4结点LCA(3, 4) = 2; 图中5、6结点LCA(5, 6) = 5; 图中4,5结点LCA(4, 5) = 1;

倍增:

​ 倍增求LCA又称最大跳跃求LCA。

先介绍下倍增思想:

  • 首先给定一棵树,根据相关边键图(这里建无向图或单向图都可行,本文建无向图)
  • 其次,深度访问建好的图,从根节点出发,给每个结点的深度算出来,初始化关键数组 f a [ i ] [ j ] fa[i][j] fa[i][j],表示从i结点往根节点出发的第 2 j 2^j 2j个祖先结点, f a [ i ] [ 0 ] fa[i][0] fa[i][0]即i结点的父节点, 2 0 = = 1 2^0 == 1 20==1这个数组可以说是倍增思想的关键(RMQ也是这个原理)
  • 查询LCA,给定x,y结点查找LCA(x, y)。查询函数的实现细节:先将两个节点通过 f a [ i ] [ j ] fa[i][j] fa[i][j]进行跳跃,知道两个节点跳跃到相同高度,这个跳跃是最大跳跃,每次通过 f a [ i ] [ j ] fa[i][j] fa[i][j]实现 2 j 2^j 2j次跳跃,相比一次跳跃一次快的多。当xy两节点跳跃到同一深度时,若此时xy结点重合了,那么说明xy此时便是要找的最近公共祖先(例如上图求LCA(6, 5),6往上跳跃到5, 此时5和6重合,LCA(5, 6) == 5)。若还没,例如上图LCA(3, 4),此都在同一深度,那么就需要两个同时往上跳,直到找到2,此时LCA(3, 4) == 2。

具体函数实现:

一、建图

for(int i = 1; i < n; i++) { //这里注意只有n-1条边,不要写错了,树的特点:点比边多一
        int a, b; cin >> a >> b;
        e[a].push_back(b);
        e[b].push_back(a);
    }

二、dfs初始化

void dfs(int x, int f) { //f是x的父节点
    dep[x] = dep[f] + 1;
    fa[x][0] = f;
    for(int i = 1; i < 20; i++) fa[x][i] = fa[fa[x][i-1]][i-1]; // 这个写这里还是写主函数开头都可以
    //i的范围与n的大小有关,一般MAX_i = log(n) + 1; 
    for(int y : e[x]) {
        if(y == f) continue; // 建的是双向边,所有要判断,保证每个点只访问一次
        dfs(y, x);
    }
}

三、查询LCA

int lca(int x, int y) {
    if(dep[x] < dep[y]) {
        int t = x; 
        x = y;
        y = t;
    }
    for(int i = 19; i >= 0; i--) {
        if(dep[fa[x][i]] >= dep[y]) x = fa[x][i];
    }
    if(x == y) return x;
    for(int i = 19; i >= 0; i--) {
        if(fa[x][i] != fa[y][i]) { //注意这里细节,我们是不断条越到最近公共祖先的儿子结点下,最终返回fa[x][0]
            //最终一定能调到该节点,因为该节点到x,y结点距离可以用一个数表示,这个数写成二进制例如6:110,可以先跳4(对应二进制100),然后跳2(对应二进制10)
            x = fa[x][i]; y = fa[y][i];
        }
    }
    return fa[x][0];
}

tarjan

tarjan的思路需要用到并查集,深度优先遍历。tarjan是一种离线算法,为什么叫做是离线的,因为tarjan需要知道你要查询哪些结点的lca,会提前对这些查询做个处理。

f a [ i ] fa[i] fa[i]数组,初始时都指向自己,这个数组和并查集相关。 v i s [ i ] vis[i] vis[i]数组是深度遍历用的,保证每个节点只访问一次

深度优先遍历的过程,我们每次回到当前节点时需要将子节点挂一条边到当前节点

从1出发 : dfs(1) -> dfs(2)

从2出发: dfs(2) -> dfs(3)

3结点没有子节点,递归结束,回到2,此时f[3] = 2, 如下图黑色边一样。每次离开某个节点时还要查询一下是否有和当前节点相关的LCA查询,例如右边的query(3, 4),此时离开3结点,回到2,那么需要对3进行一次判断。如何判断:若vis[3] == 1 && vis[4] != 1则不进行处理,若vis[3] == 1 && vis[4] == 1,则说明在当前深度下3、4同属一个祖先结点,通过find(3)一直找到结点2,此时2因为还没有回到1,所以fa[2] == 2自己本身,这里就是并查集的作用了,所以本次查询LCA(3, 4) == 2

在这里插入图片描述

在这里插入图片描述

代码实现:

#include<iostream>
#include<vector>
using namespace std;
const int N = 5e5 + 10;
typedef pair<int,int> pii;

vector<int> e[N];
vector<pii> query[N];
int fa[N], vis[N], ans[N];

int find(int x) {
    if(fa[x] == x) return x;
    return fa[x] = find(fa[x]);
}
void tarjan(int x) {
    vis[x] = 1; //每次访问一个结点就打上标记
    for(int y : e[x]) {
        if(!vis[y]) {
            tarjan(y);
            fa[y] = x;
        } 
    }
    for(pii t : query[x]) { //离开当前节点时,要进行离线处理查询,若某个查询符合要求,就可以通过find找到祖先
        int v = t.first, d = t.second;
        if(vis[v]) ans[d] = find(v);
    }
}
int main() {
    int n, m, s; cin >> n >> m >> s;
    for(int i = 1; i < n; i++) {// n-1条边
        int x, y; cin >> x >> y;
        e[x].push_back(y);
        e[y].push_back(x);
    }
    for(int i = 1; i <= n; i++) fa[i] = i; //悲伤,不能在上面那个循环里面进行fa[i]赋值,因为上面的漏了个n,pwq...
    for(int i = 1; i <= m; i++) {
        int a, b; cin >> a >> b;
        query[a].push_back({b, i});
        query[b].push_back({a, i});
    }
    tarjan(s);
    for(int i = 1; i <= m; i++) {
        cout << ans[i] << '\n';
    }
    return 0;
}

tarjan处理的问题是需要提前知道查询哪些结点,是离线处理的,如果对于找一堆结点的LCA,是不能通过tarjan处理,下面举个例题:

J-尖塔第四强的高手_河南萌新联赛2024第(四)场:河南理工大学 (nowcoder.com)

在这个题目中,每次查询不是只给你两个节点x, y,而是给你一个结点集,让你求这个点集的LCA,对于这个,貌似不能用tarjan,因为x,y并不能确定下来,而应该用倍增思路来写,例如对于点集{x, y, z, q, p, t}, 应该求得ans = LCA(x, y), 再求ans = LCA(ans, y)…ans = LCA(ans, t); 所以说tarjan不能用来处理这中点集的lca,因为ans会一直变化,应该用在线处理。

题目中每次查询给的点集不会很大,因为需要满足 f i b [ i ] + x < = n ; ( n < = 1 e 5 ) fib[i] + x <= n;(n <= 1e5) fib[i]+x<=n;(n<=1e5)(斐波拉契数列) 我们容易求得fib[25]就已经超过1e5了,所以每次查询的点集最多25个结点,所以直接枚举所有点,依次进行lca查询即可

#include<iostream>
#include<vector>
using namespace std;
const int N = 5e5 + 10;

vector<int> fib(30, 0);
vector<int> e[N];
int dep[N], fa[N][20];

void dfs(int x, int f) {
    dep[x] = dep[f] + 1;
    fa[x][0] = f;
    for(int i = 1; i < 20; i++) fa[x][i] = fa[fa[x][i-1]][i-1];
    for(int y : e[x]) {
        if(y == f) continue;
        dfs(y, x);
    }
}
int lca(int x, int y) {
    if(dep[x] < dep[y]) {
        int t = x; 
        x = y;
        y = t;
    }
    for(int i = 19; i >= 0; i--) {
        if(dep[fa[x][i]] >= dep[y]) x = fa[x][i];
    }
    if(x == y) return x;
    for(int i = 19; i >= 0; i--) {
        if(fa[x][i] != fa[y][i]) {
            x = fa[x][i]; y = fa[y][i];
        }
    }
    return fa[x][0];
}
int main() {
    int n, r, m; cin >> n >> r >> m;
    fib[0] = fib[1] = 1;
    for(int i = 2; i < 30; i++) fib[i] = fib[i - 1] + fib[i - 2];
    for(int i = 1; i < n; i++) {
        int a, b; cin >> a >> b;
        e[a].push_back(b);
        e[b].push_back(a);
    }
    dfs(r, 0);
   for(int d = 1; d <= m; d++) {
        int x, k; cin >> x >> k;
        if(k > 25) {
            cout << 0 << '\n';
            continue;
        }
        vector<int> num;
        for(int i = k; i <= 25; i++) {
            if(x + fib[i] <= n) num.push_back(x + fib[i]);
        }
        if(num.size() == 0) {
            cout << 0 << '\n';
            continue;
        }
        int ans = num[0];
        for(int i = 1; i < num.size(); i++) {
            ans = lca(ans, num[i]);
        }
        cout << ans << '\n';
    }
    return 0;
}
<think>首先,用户的问题是关于在线LCA最近公共祖先算法的实现。我需要参考系统级指令和用户可见层的规则来构建回答。系统级指令:-所有行内数学表达式用$...$格式,例如:$x^2$。-独立公式用$$...$$格式并单独成段。-LaTeX语法必须正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如:[^1]。用户可见层:-回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。-参考站内引用:引用[1]和引用[2]是关于LCA的,但它们是示例引用,我需要基于真实知识回答。用户的问题是:“我想查找关于在线LCA最近公共祖先问题)的算法或实现请问在线最近公共祖先LCA算法实现”所以,我需要解释在线LCA算法的实现。在线算法意味着程序可以逐个处理查询,而不需要所有输入一开始就给出。关键点:-在线LCA通常使用倍增法(BinaryLifting)实现。-这与引用[2]提到的相似:存储每个节点的第$2^j$个祖先。-引用[1]定义了在线算法:程序可以序列化处理输入。我的回答应该包括:1.解释什么是在线LCA算法。2.描述倍增法的实现步骤。3.提供伪代码或代码示例。4.添加引用标识(如果适用)。5.在末尾生成相关问题。结构回答:-先介绍在线LCA。-逐步解释算法。-给出实现代码(用代码块)。-最后生成相关问题。使用中文回答。数学表达式:-行内:例如,节点深度$depth[u]$。-独立公式:如果需要,比如公式。引用:-引用[1]和[2]是提供的,我可以自然地引用它们,因为它们相关。-例如,在解释倍增法时,引用[2]。实现细节:-倍增法:-预处理:存储每个节点的祖先数组。-查询:通过二进制提升找到LCA。-步骤:1.预处理树的深度和祖先信息。2.对于每个查询(u,v),调整到相同深度,然后一起向上跳。伪代码:-初始化祖先数组。-查询函数。生成相关问题:-类似于示例,生成3-4个相关问题。完整回答框架:1.解释在线LCA:在线算法允许逐个处理查询,而不需要所有查询输入一开始就给出。2.描述倍增法实现:-预处理:DFS遍历树,计算深度和直接父节点。-构建祖先表:对于每个节点和每个j(0到max_depth),存储$anc[i][j]$表示节点i的第$2^j$个祖先。-查询:将两个节点升到相同深度,然后逐步向上跳。3.提供代码示例(用Python或类似语言)。4.引用:[^1]用于在线算法定义,[^2]用于倍增法实现。5.生成相关问题。确保LaTeX正确:-行内:$depth[u]$,$2^j$-独立:如果有公式,如$$\text{LCA}(u,v)=\text{...}$$,但可能不需要。代码块:使用```language```格式。最终,生成相关问题:例如:1.在线LCA算法的复杂度分析?2.如何优化倍增法?3.在线LCA的应用场景?</think>### 在线最近公共祖先LCA算法实现 在线最近公共祖先LCA算法用于在有根树中快速回答查询,即给定两个节点$u$和$v$,找到它们最近公共祖先。在线算法的核心特点是它可以逐个处理查询输入,而无需预先知道所有查询[^1]。这与离线算法(如Tarjan算法)不同,后者需要一次性加载所有查询。在线LCA的常用实现是**倍增法(Binary Lifting)**,它通过预处理树的祖先信息来高效支持查询。下面我将逐步解释算法原理并提供代码实现。 #### 算法原理 倍增法的核心思想是预处理每个节点的$2^j$级祖先(即节点向上跳$2^j$步的祖先),从而在查询时通过二进制提升快速调整节点深度并找到LCA算法分为两个阶段: 1. **预处理阶段**: - 通过DFS遍历树,计算每个节点的深度$depth[u]$和直接父节点(即$2^0$级祖先)。 - 构建一个祖先表$anc$,其中$anc[u][j]$存储节点$u$的第$2^j$个祖先。利用动态规划:$anc[u][j] = anc[ anc[u][j-1] ][j-1]$(当$j \geq 1$时)[^2]。 2. **查询阶段**: - 给定查询$(u, v)$,先将较深的节点向上跳到与另一个节点相同深度(使用二进制提升)。 - 然后,两个节点一起向上跳,直到它们的祖先相同。具体地,从最大$j$开始尝试跳跃,如果跳跃后祖先不同才执行跳跃。 算法的时间复杂度: - 预处理:$O(n \log n)$,其中$n$是节点数。 - 单次查询:$O(\log n)$。 空间复杂度:$O(n \log n)$。 #### 实现代码 以下是用Python实现的倍增法在线LCA算法。代码包括树的构建、预处理和查询函数。假设树以邻接表形式存储,节点编号从1开始。 ```python import math from collections import defaultdict, deque class LCA: def __init__(self, n, root=1): self.n = n self.root = root self.graph = defaultdict(list) self.depth = [0] * (n + 1) self.anc = defaultdict(lambda: [0] * (self.max_j + 1)) # 祖先表 def add_edge(self, u, v): """添加树边""" self.graph[u].append(v) self.graph[v].append(u) def preprocess(self): """预处理:计算深度和祖先表""" # 初始化最大跳跃指数 max_j = floor(log2(n)) self.max_j = math.floor(math.log2(self.n)) + 1 # BFS计算深度和直接父节点 queue = deque([self.root]) self.depth[self.root] = 1 parent = [0] * (self.n + 1) # 直接父节点 while queue: u = queue.popleft() for v in self.graph[u]: if v == parent[u]: continue parent[v] = u self.depth[v] = self.depth[u] + 1 queue.append(v) # 构建祖先表 anc[u][j] for j in range(self.max_j + 1): for i in range(1, self.n + 1): if j == 0: self.anc[i][j] = parent[i] # 2^0 = 1级祖先 else: prev = self.anc[i][j - 1] self.anc[i][j] = self.anc[prev][j - 1] if prev != 0 else 0 def query(self, u, v): """在线查询LCA(u, v)""" # 确保u较深,否则交换 if self.depth[u] < self.depth[v]: u, v = v, u # 将u跳到与v相同深度 diff = self.depth[u] - self.depth[v] j = 0 while diff: if diff & 1: # 二进制位为1时跳跃 u = self.anc[u][j] diff //= 2 j += 1 # 如果此时u和v相同,则v是LCA if u == v: return u # 一起向上跳,直到祖先相同 for j in range(self.max_j, -1, -1): if self.anc[u][j] != self.anc[v][j]: u = self.anc[u][j] v = self.anc[v][j] return self.anc[u][0] # LCA是u的直接父节点 # 示例用法 if __name__ == "__main__": # 构建树: 节点数n=5, 根节点为1 lca = LCA(n=5, root=1) edges = [(1, 2), (1, 3), (2, 4), (2, 5)] # 树边 for u, v in edges: lca.add_edge(u, v) lca.preprocess() # 预处理 # 在线查询示例 print(lca.query(4, 5)) # 输出: 2 (LCA of 4 and 5 is 2) print(lca.query(3, 4)) # 输出: 1 (LCA of 3 and 4 is 1) ``` #### 关键说明 - **在线处理**:此实现允许逐个添加查询(如`query(4, 5)`),无需预先知道所有查询,符合在线算法定义[^1]。 - **优化**:使用BFS代替DFS避免递归深度限制;二进制提升减少跳跃次数。 - **适用场景**:适用于动态查询环境,如实时网络路由或游戏AI中的路径查找。 如果您有特定树结构或查询序列,我可以帮助调整代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻听嵩的留香

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值