Dify又一神器 - Firecrawl一键爬取网站,打造更丰富的AI知识库!

在当今信息爆炸的时代,构建高效、全面的知识库对于企业和个人而言至关重要。然而,如何快速、高效地从海量网络数据中提取有价值的信息,一直是个挑战。幸运的是,FireCrawl 的出现为我们提供了全新的解决方案。


FireCrawl:AI驱动的智能爬虫工具

FireCrawl 是由 Mendable.ai 开发的开源项目,旨在将网站内容转换为适用于大型语言模型(LLM)的结构化数据。它无需站点地图即可抓取任何网站的所有可访问子页面,并将这些内容转换为干净、格式化的 Markdown 文档。

你也可以本地部署,可以按照READEME.md来进行本地部署 项目地址:https://github.com/mendableai/firecrawl 本例中使用的是Cloud版本的FireCrawl()

核心优势
  • 系统性智能抓取:FireCrawl 能够智能发现并追踪网站内部链接,确保内容的完整性和连贯性。
  • 精准内容识别与过滤:它能智能识别并提取网页中的主要内容,自动过滤广告、导航栏等无关元素,确保保留对 AI 系统有用的核心信息。
  • 语义化结构转换:FireCrawl 将抓取的网页内容转换为清晰、格式化的 Markdown 文档,保留标题、段落、列表等元素的层级关系,方便后续处理和分析。
  • 用户友好的操作体验:无需编程知识,只需输入目标 URL,即可完成 Web 知识库的一键式生成。
本地部署 FireCrawl 的步骤

为了满足对数据隐私和安全性的需求,您可以选择在本地环境中部署 FireCrawl。以下是简要的部署步骤:

克隆代码仓库:在终端中执行以下命令,将 FireCrawl 的代码克隆到本地:

  1. git clone https://github.com/mendableai/firecrawl.git
  • 设置环境参数:进入克隆的目录,复制环境变量模板文件,并进行必要的配置:
  1. cd firecrawl
  2. cp?.env.example?.env

使用文本编辑器打开 .env 文件,修改以下参数:

USE_DB_AUTHENTICATION:设置为 false,表示不使用数据库认证。

TEST_API_KEY:设置一个自定义的 API 密钥,例如 your_api_key。

启动 FireCrawl:在终端中执行以下命令,使用 Docker Compose 启动 FireCrawl:

  1. docker-compose up?-d

配置 Dify 与 FireCrawl 的集成:在 Dify 的设置中,添加 FireCrawl 的 API 配置,确保 Base URL 设置为 http://host.docker.internal:3002,并输入之前设置的 API 密钥。

应用场景
  • 技术文档的知识库构建:利用 FireCrawl,您可以快速爬取官方文档,构建全面的知识库,方便技术学习和查询。
  • 市场调研与竞争分析:通过爬取目标公司发布的市场调研和商业洞见,获取最新的行业动态和竞争情报。

Dify FireCrawl插件

在dify的插件市场已经封装了FireCrawl调用

图片

你只需要简单的点击安装即可享用; 当然在使用Cloud版本的FirCrawl要注意的一点是需要在平台上生成API Key, 地址:https://www.firecrawl.dev/

可以在Dify平台直接点击登录生成API Key

图片

在FireCrawl平台注册成功后你可以查看Api Key

图片

拿到key直接在Dify填入授权即可使用FireCrawl插件


Dify平台构建知识库

Dify和FireCrawl集成已经很好了,在Dify创建知识库可以直接通过FireCrawl生成,不用你再去粘贴复制,生成文件这么麻烦

图片

这里我用 https://www.promptingguide.ai/zh 这个网页为例 生成一个提示词相关的知识库,效果如下:

图片

抓取结束

图片

经过一段时间的知识库处理,大工告成??,接下来就可以愉快的使用基于网页的知识库了。

图片

图片


总结

FireCrawl 通过其强大的功能和简便的操作,为构建高质量的 AI 知识库提供了一站式解决方案。无论是企业还是个人,都可以利用 FireCrawl 高效地从网络中提取有价值的信息,助力 AI 应用的开发和优化。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!**超高年薪,挖掘AI大模型人才!**如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份资料分享出来:包括书籍、640套大模型行业报告、学习视频、学习路线、开源大模型学习教程等, ??有需要的小伙伴,可以扫描下方二维码领取??↓↓↓

一、经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、系列视频教程

在这里插入图片描述

四、开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

学习路线

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份资料包括书籍、640套大模型行业报告、学习视频、学习路线、开源大模型学习教程等, ??有需要的小伙伴,可以扫描下方二维码领取??↓↓↓

### 关于 Dify 在线知识库Firecrawl 授权的信息 #### Dify 在线知识库概述 Dify种基于大模型的知识管理工具,允许用户创建私有化的知识库并将其用于问答场景。其核心功能在于支持自定义训练数据集以及灵活的 API 集成方式[^2]。为了确保用户的隐私与安全,Dify 提供了多种授权机制来保护知识库的数据不被滥用。 对于 Dify 的许可证配置,通常需要通过官方文档或 GitHub 页面获取详细的许可协议说明。大多数开源项目采用常见的开源许可证(如 MIT、Apache 2.0 或 AGPL),而商业版本可能会附带额外的专有条款。如果未明确提及具体许可证,则建议联系开发者团队以确认具体的授权范围[^3]。 --- #### Firecrawl 授权详情 Firecrawl 主要遵循 **AGPL-3.0** 许可证,这意味着任何修改后的源码分发都需要公开共享给社区。然而,某些特定组件可能单独采用了宽松的 **MIT** 许可证[^1]。因此,在实际应用过程中需要注意区分项目的各个模块及其对应的许可证类型。 以下是有关 Firecrawl 授权的些重要事项: 1. 如果仅在内部部署而不对外发布代码或服务,则无需强制披露源码。 2. 当计划将 Firecrawl 整合到其他产品中并向公众提供时,需严格遵守 AGPL-3.0 要求,即开放完整的源代码及相关依赖项。 3. 对于希望避免合规复杂性的企业用户来说,可以选择购买商业版许可证(如果有)。这通常由原作者或维护者决定是否提供此类选项[^4]。 此外,值得注意的是默认情况下 Firecrawl 尊重目标站点 `robots.txt` 文件中的爬虫规则,并提醒使用者务必了解并遵循目标网站的服务条款 (Terms of Service) 和隐私政策[^1]。 --- #### 获取或许可证配置方法 针对如何获取或许可证配置这需求,可以从以下几个方面入手: ##### 方法:查阅官方文档 无论是 Dify 还是 Firecrawl,它们各自的官方网站或者托管平台(通常是 GitHub)都会包含详尽的技术资料与法律声明。这些资源能够帮助理解软件的功能边界及合法使用的前提条件[^5]。 ##### 方法二:直接咨询开发人员 当遇到模糊不清的地方时,最有效的方式便是向项目负责人提问。许多活跃的开源项目都设有专门的支持渠道,比如邮件列表、Slack/Discord 工作区或是 Issues 区域等。利用好这些沟通桥梁有助于快速解决问题[^6]。 ##### 方法三:评估第三方服务商 假如缺乏时间精力去深入研究复杂的授权细节,也可以考虑借助专业的第三方机构来进行全面分析。他们往往具备丰富的经验处理类似的版权事务,并能给出针对性强的意见指导[^7]。 ```python import requests def check_license(repo_url): """查询仓库主页上的 LICENSE 文件""" license_url = f"{repo_url}/blob/main/LICENSE" response = requests.get(license_url) if response.status_code == 200: print(f"LICENSE found at {license_url}") else: print("No explicit LICENSE file detected.") check_license("https://github.com/firecrawl-org/firecrawl") # 替换为目标存储库地址 ``` 以上脚本可用于初步判断某个 Git 存储库是否存在显式的 License 文档链接。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值