在当今信息爆炸的时代,构建高效、全面的知识库对于企业和个人而言至关重要。然而,如何快速、高效地从海量网络数据中提取有价值的信息,一直是个挑战。幸运的是,FireCrawl 的出现为我们提供了全新的解决方案。
FireCrawl:AI驱动的智能爬虫工具
FireCrawl 是由 Mendable.ai 开发的开源项目,旨在将网站内容转换为适用于大型语言模型(LLM)的结构化数据。它无需站点地图即可抓取任何网站的所有可访问子页面,并将这些内容转换为干净、格式化的 Markdown 文档。
你也可以本地部署,可以按照READEME.md来进行本地部署 项目地址:https://github.com/mendableai/firecrawl 本例中使用的是Cloud版本的FireCrawl()
核心优势
- 系统性智能抓取:FireCrawl 能够智能发现并追踪网站内部链接,确保内容的完整性和连贯性。
- 精准内容识别与过滤:它能智能识别并提取网页中的主要内容,自动过滤广告、导航栏等无关元素,确保保留对 AI 系统有用的核心信息。
- 语义化结构转换:FireCrawl 将抓取的网页内容转换为清晰、格式化的 Markdown 文档,保留标题、段落、列表等元素的层级关系,方便后续处理和分析。
- 用户友好的操作体验:无需编程知识,只需输入目标 URL,即可完成 Web 知识库的一键式生成。
本地部署 FireCrawl 的步骤
为了满足对数据隐私和安全性的需求,您可以选择在本地环境中部署 FireCrawl。以下是简要的部署步骤:
克隆代码仓库:在终端中执行以下命令,将 FireCrawl 的代码克隆到本地:
git clone https://github.com/mendableai/firecrawl.git
- 设置环境参数:进入克隆的目录,复制环境变量模板文件,并进行必要的配置:
cd firecrawl
cp?.env.example?.env
使用文本编辑器打开 .env 文件,修改以下参数:
USE_DB_AUTHENTICATION:设置为 false,表示不使用数据库认证。
TEST_API_KEY:设置一个自定义的 API 密钥,例如 your_api_key。
启动 FireCrawl:在终端中执行以下命令,使用 Docker Compose 启动 FireCrawl:
docker-compose up?-d
配置 Dify 与 FireCrawl 的集成:在 Dify 的设置中,添加 FireCrawl 的 API 配置,确保 Base URL 设置为 http://host.docker.internal:3002,并输入之前设置的 API 密钥。
应用场景
- 技术文档的知识库构建:利用 FireCrawl,您可以快速爬取官方文档,构建全面的知识库,方便技术学习和查询。
- 市场调研与竞争分析:通过爬取目标公司发布的市场调研和商业洞见,获取最新的行业动态和竞争情报。
Dify FireCrawl插件
在dify的插件市场已经封装了FireCrawl调用
你只需要简单的点击安装即可享用; 当然在使用Cloud版本的FirCrawl要注意的一点是需要在平台上生成API Key, 地址:https://www.firecrawl.dev/
可以在Dify平台直接点击登录生成API Key
在FireCrawl平台注册成功后你可以查看Api Key
拿到key直接在Dify填入授权即可使用FireCrawl插件
Dify平台构建知识库
Dify和FireCrawl集成已经很好了,在Dify创建知识库可以直接通过FireCrawl生成,不用你再去粘贴复制,生成文件这么麻烦
这里我用 https://www.promptingguide.ai/zh 这个网页为例 生成一个提示词相关的知识库,效果如下:
抓取结束
经过一段时间的知识库处理,大工告成??,接下来就可以愉快的使用基于网页的知识库了。
总结
FireCrawl 通过其强大的功能和简便的操作,为构建高质量的 AI 知识库提供了一站式解决方案。无论是企业还是个人,都可以利用 FireCrawl 高效地从网络中提取有价值的信息,助力 AI 应用的开发和优化。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!**超高年薪,挖掘AI大模型人才!**如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份资料
分享出来:包括书籍、640套大模型行业报告、学习视频、学习路线、开源大模型学习教程
等, ??有需要的小伙伴,可以扫描下方二维码领取??↓↓↓
一、经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、系列视频教程
四、开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
学习路线↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份资料
包括书籍、640套大模型行业报告、学习视频、学习路线、开源大模型学习教程
等, ??有需要的小伙伴,可以扫描下方二维码领取??↓↓↓