AI大模型开发——7.百度千帆大模型调用

        本节旨在为读者提供一个实用指南,探讨如何有效地利用百度千帆大模型平台的强大功能。从基础的账号注册和密钥申请入手,逐步引领用户通过案例, 理解并掌握如何调用文本和图像处理的大模型 API, 包括但不限于 NLP、对话生成、文本续写以及图像生成等领域。

1.千帆大模型平台简介

        在 AI蓬勃发展的时代, 大模型平台作为支撑大规模数据处理和复杂模型训练的基石, 正逐渐成为推动科技创新和产业升级的重要力量。千帆大模型平台, 凭借其卓越的性能、灵活的应用和强大的生态系统,已成为众多企业和研究机构首选的大模型解决方案。
        千帆大模型平台是一个集数据处理、模型训练、推理部署于一体的综合性平台,它提供了丰富的算法库和工具集, 支持多种深度学习框架, 能够轻松应对各种复杂的数据处理和模型训练任务。平台采用分布式计算架构,能够充分利用多节点计算资源, 以实现高效的大规模数据训练和推理。
        千帆大模型平台具备以下核心特性。
        (1)高效性:平台采用先进的算法优化和并行计算技术, 能够显著提升模型训练速度和推理性能。
        (2)灵活性:平台支持自定义模型开发和训练, 用户可以根据具体需求选择合适的算法和参数进行模型调优。
        (3)易用性:平台提供了简洁直观的图形化界面和友好的API接口, 降低了用户的使用门槛。同时, 平台还提供了详细的文档和教程, 可帮助用户快速上手并充分利用平台功能。
        (4)安全性:平台采用了严格的数据加密和访问控制机制, 可确保用户数据的安全性和隐私性。
        千帆大模型平台广泛应用于NLP、计算机视觉、语音识别等领域,为众多行业提供了强大的智能支持。例如, 在NLP领域, 千帆大模型平台可以帮助企业构建智能客服、机器翻译等应用;在计算机视觉领域,千帆大模型平台可以用于图像识别、目标检测等任务;在语音识别领域,千帆大模型平台可以实现高精度的语音转写和识别功能。

2.第一个大模型调用

2.1 注册并申请密钥

(1)访问官网:

百度智能云-云智一体深入产业 (baidu.com)

(2)注册或登录账号

(3)点击控制台

(4)进入控制台详情页,并进入百度智能云千帆大模型平台。

(5)进入创建应用界面后,点击进入“应用接入”界面。

(6)应用配置。点击“去创建”进入应用配置界面。

2.2 开启千帆大模型 API调用

        百度智能云千帆平台提供了丰富的API, 包括对话 Chat、续写 Completions、向量 Embeddings、插件应用、提示工程、模型服务、管理、调优及数据管理等API能力。本小节以调用一个对话 Chat流程进行说明。
        (1) 创建应用。创建应用的操作已经在3.2.1小节中完成, 无须再次操作。
        (2) API授权。创建应用的时候平台自动授权, 无须操作。
        (3) 获取接口访问凭证 access _ token。使用在3.2.1 小节获取的API Key 和 Secret Key, 调用获取 access _ token 接口获取 access _ token, 通过 access _ token 鉴权调用者身份。
获取 access _ token接口的 Python版本代码如下。

import json
import requests


def main():
    url = 'https://aip.baidubce.com/oauth/2.0/token'
    payload = {
        'client_id': 'XXX',  # 请替换为您的 client_id
        'client_secret': 'XXX',  # 请替换为您的 client_secret
        'grant_type': 'client_credentials'
    }

    # 发送表单数据
    response = requests.post(url, data=payload)

    # 打印状态码和响应内容
    print("Status Code:", response.status_code)
    print("Response Text:", response.text)

    # 尝试解析 JSON 响应
    try:
        return response.json().get('access_token')
    except json.JSONDecodeError:
        print("Failed to decode JSON response")
        return None


if __name__ == "__main__":
    access_token = main()
    print(access_token)

        如果上述代码提示ModuleNotFoundError: No module named ' requests'错误, 表示需要激活自己的 Anaconda 环境并安装 requests模块, 后续需要导入新的模块时也是同样的操作。

#创立环境
conda create -n qf python=3.9

#启动环境
conda activate qf 

#安装库
conda install json
conda install requests

  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值