高精度乘法与之前所说的加法区别在于:乘法需要一个数的每一位数乘以另一个数的所有位数,然后在将相应下标的数进行相加。
s1:a1a2a3a4
s2:b1b2b3
s1*s2: a4a3a2a1
* b3b2b1
---------------------------------------------------------------------------------------------------------------------------------
a4b1 a3b1 a2b1 a1b1
a4b2 a3b2 a2b2 a1b2
a4b3 a3b3 a2b3 a1b3
---------------------------------------------------------------------------------------------------------------------------------
下标:6 5 4 3 2 1
由上述例子可以看出a[i]*b[j]的下标可以确定为c[i+j-1],再将新相乘得到的数与原来的c[i+j-1]相加。同时也可以确定所乘结果的最大位数为s1与s2长度之和(因为a4b3有可能进位)。
步骤:
1.各位对齐-反转,字符型转整型
2.计算c数组的长度,按照最长数位算 (la+lb)
3.对位相乘得到c数组
4.去除前导0
5.倒序打印
#include<bits/stdc++.h>
using namespace std;
int a[101],b[101];//s1的转换,s2的转换
int c[101];//s1和s2的数值之和的转换
//将s1和s2的数值倒置
void strtoint(string s,int n[]){
/*
下标 012345
s1 12345
a(倒置后) 54321(从下标1开始)
*/
for(int i=0;i<s.size();i++){
n[s.size()-i]=s[i]-'0';
}
}
int main(){
//高精度数值
string s1,s2;cin>>s1>>s2;
int la=s1.size();
int lb=s2.size();
//1.各位对齐-反转,字符型转整型
strtoint(s1,a);
strtoint(s2,b);
//2.计算c数组的长度,按照最长数位算
int lc=la+lb;
//3.对位相乘得到c数组
for(int i=1;i<=la;i++){
for(int j=1;j<=lb;j++){
c[i+j-1]+=a[i]*b[j];
c[i+j]+=c[i+j-1]/10;
c[i+j-1]%=10;
}
}
//4.去除前导0
while(c[lc]==0&&lc>1){
lc--;
}
//5.倒序打印
for(int i=lc;i>=1;i--){
cout<<c[i];
}
return 0;
}
练习题:P1303 A*B Problem(注意数字的范围)