- 博客(26)
- 收藏
- 关注
原创 机器学习与光子学的融合正重塑光学器件设计范式
Nature/Science最新研究揭示该交叉领域六大方向:光子器件逆向设计、超构材料优化、光子神经网络加速器等。研究体系包含四维架构:1)光学与AI理论融合;2)FDTD算法结合智能优化技术;3)深度学习模型开发应用;4)衍射神经网络等前沿场景。当前超构表面设计、光学矩阵芯片等关键技术均依赖课程涵盖的拓扑优化、光谱预测等方法论,通过Nature级案例打通从仿真到芯片落地的完整技术链,提供跨学科解决方案。
2025-07-10 16:35:43
489
原创 超表面逆向设计及前沿应用(从基础入门到论文复现)
超表面逆向设计通过计算优化实现电磁波精准调控,已成为光学领域研究热点。本文系统介绍超表面设计原理、逆向优化算法(遗传算法、拓扑优化等)及典型应用(全息成像、超透镜等),并详细解析从基础理论到论文复现的全流程学习路径,为研究者提供快速入门指南。文章重点剖析逆向设计在突破传统光学局限方面的优势,以及如何通过算法实现复杂功能超表面的高效设计。
2025-07-04 17:08:42
834
原创 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
本文探讨流体力学数值模拟与AI技术的融合创新。在传统CFD方面,介绍了不可压缩N-S方程的数值解法及Fluent在流场仿真中的应用。重点阐述了AI预处理CFD数据的降维方法,以及物理机理嵌入的神经网络架构(包括PINN、NeuralODE和GANs)。通过案例展示了流场智能预测的实践应用,如CNN湍流特征提取和Diffusion模型应用。创新点在于:1)AI加速传统CFD计算;2)工业软件与深度学习框架的整合;3)物理约束提升模型可信度。研究实现了流体力学计算与AI技术的协同创新。
2025-07-03 15:19:45
588
原创 突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
研究团队首次在14微米电子马赫-曾德尔干涉仪中实现了30皮秒等离子体脉冲的单电子量子干涉,为飞行量子比特计算奠定基础。通过非线性量子整流技术,在1GHz以上频率观察到显著非绝热效应,颠覆传统绝热操控限制。该技术利用GaAs/AlGaAs异质结二维电子气,实现单电子精准注入,干涉对比度显著提升。相比光子方案,电子量子比特具有硬件密度高、直接纠缠等优势。研究为量子计算、传感及通信开辟新途径,相关数据和代码已开源。这一突破解决了飞行量子比特的核心注入难题,有望推动
2025-07-01 16:04:15
465
原创 前沿融合:机器学习如何重塑智能水泥基复合材料研发范式
人工智能正深刻变革材料科学,机器学习成为破解水泥基材料性能优化的核心技术。课程涵盖三大前沿方向:1)数据驱动方法构建材料基因库,实现微观-宏观性能预测;2)深度学习融合物理机理,重点解析PINNs嵌入物理定律和GAN生成小样本数据等创新应用;3)模型可解释性研究与应用验证体系。通过复现顶刊案例,系统掌握从经典算法到物理启发性模型的全栈技术,解决材料研发中的非线性、小样本等核心挑战,显著提升智能复合材料设计能力,把握行业智能化转型机遇。(149字)
2025-06-27 15:24:01
868
原创 前沿解读:缺陷如何操控二维半导体中的电子摩擦耗散超快动力学
清华团队在Nature Communications发表研究,首次揭示原子缺陷对二维半导体WS₂电子摩擦的超快调控机制。研究发现,硫空位密度增加会导致摩擦系数近乎翻倍(从0.0102升至0.0184),并在皮秒级(1-10ps)内捕获导带电子,形成新的能耗通道。通过跨尺度表征和飞秒泵浦-探测技术,团队发现缺陷使电子能耗速率提升约60%,寿命从85ps缩短至53ps。该研究建立了"缺陷密度-电子能耗速率-摩擦系数"的动态关联,为设计超低摩擦半导体界面提供了新思路,对提升微纳器件能效具有重要
2025-06-26 17:03:33
505
原创 智能光学计算成像技术与应用
智能光学计算成像技术结合光学与AI算法,突破传统成像限制,实现高效、高质量图像获取。该技术通过智能计算优化光学系统,提升成像分辨率与深度,在医疗、遥感、安防等领域广泛应用。
2025-06-25 13:54:58
775
原创 超表面逆向设计及前沿应用(从基础入门到论文复现)
超表面逆向设计及前沿应用研究综述:从理论基础到实验复现。本文系统介绍了超表面逆向设计方法,涵盖基础原理、优化算法及工程实现,重点分析了其在光学、电磁等领域的创新应用。通过典型论文案例解析,提供从仿真建模到实验验证的完整技术路线,为相关研究提供实用参考。
2025-06-24 15:00:45
667
原创 顶刊速览 | 太赫兹手性光子晶体腔实现石墨烯狄拉克点能隙调控
本研究提出了一种基于磁等离子体的太赫兹手性光子晶体腔(PCC)设计,可在弱磁场(0.2T)下实现时间反演对称性破缺。通过优化InSb磁等离子体与一维光子晶体层状结构,获得了Q因子>400且具有均匀圆偏振电场的高性能腔体。该设计对左/右圆偏振光具有选择性吸收,形成静态驻波打破TRS。理论预测石墨烯狄拉克点能隙约1meV,并可提升至10meV。该技术为探索手性真空场修饰的量子材料提供了低磁场、高精度实验平台。
2025-06-20 16:25:02
279
原创 机器学习赋能多尺度材料模拟:前沿技术会议邀您共探
【前沿技术会议预告】2025年7月26-28日将举办"机器学习赋能的多尺度材料模拟与催化设计"研讨会。会议将融合分子动力学模拟、第一性原理计算与机器学习算法,通过锂硫电池等实战案例,展示"数据驱动+物理建模"的创新路径。特邀高校专家分享VASP、LAMMPS等计算软件与PyTorch等框架的应用,构建"计算-模拟-训练-验证"全流程体系,助力材料性能预测与催化优化。欢迎材料、化学、物理及工程领域研究者参与交流。
2025-06-19 15:17:06
580
原创 机器学习重构光子学设计范式:从智能器件到前沿系统
摘要: AI与光子学融合研究呈现六大前沿方向,包括光子器件逆向设计和光学神经网络等。研究构建了系统性知识框架,通过仿真平台实战掌握核心设计技术,并利用机器学习实现器件智能生成。重点突破光学神经网络、芯片制造优化和智能测量系统三大方向,结合Nature/Science案例,贯通全研发链条。该研究将AI工具深度嵌入光子器件研发,推动科研范式向数据驱动转型,为光子芯片等热点领域提供创新方法论。
2025-06-18 14:39:48
713
原创 深度学习驱动的流体力学计算前沿技术体系
摘要:本系统创新性地融合Fluent仿真与深度学习算法,构建了面向复杂流动问题的全链条解决方案。核心技术涵盖CFD数值解法、物理信息神经网络(PINN)、动力学神经网络等前沿方法,通过工业级案例实现从传统流体力学到AI赋能的跨越。系统特色包括:学科深度交叉、工业实践验证、前沿技术整合以及完整技术闭环,有效解决高精度模拟、数据特征挖掘等核心难题,为航空航天等领域提供新一代智能流体分析工具。
2025-06-17 11:35:30
350
原创 AI重构光芯片未来!深度学习设计衍射波导登Nature子刊,性能超越传统方案
加州大学团队在《Nature Communications》发表突破性研究,提出基于深度学习的通用衍射波导设计框架。该技术通过优化级联衍射表面的相位分布,克服传统波导在材料色散、多功能集成等方面的局限,实现了92%以上的耦合效率和99.4%的能量效率。实验验证表明,该设计可灵活实现导光、模式滤波等功能,且具有波长普适性。这一成果为光通信、AR/VR等领域带来革新,有望成为下一代光子系统的核心引擎。
2025-06-16 14:17:04
472
原创 智能光学计算成像技术前沿体系解析
摘要:当前光学成像正经历AI驱动的范式变革。本体系包含:1)基础理论层建立光学-算法联合优化框架,涵盖计算成像物理模型与神经表示等数学工具;2)AI融合层解析深度学习在端到端光学设计、神经网络重构及新型成像范式中的应用;3)热点应用包括微纳光学成像、光谱突破等前沿领域。技术实践结合PyTorch/TensorFlow,完成光学神经网络构建等工业级实验。该体系耦合硬件革新与AI算法,提供从理论到应用的完整知识图谱。(150字)
2025-06-13 17:31:03
642
原创 超表面逆向设计前沿方法精要
摘要:研究聚焦CMT理论框架下的电磁态调控,提出突破性方法:1)构建非辐射态模型提升超表面Q值;2)基于明暗模耦合实现太赫兹波段可调谐效应;3)创新逆向设计范式反演器件拓扑结构。研究融合FDTD计算技术,结合拓扑优化算法与自动化设计流程,在偏振调控、宽谱补偿等领域取得突破。该方向成果频现顶级期刊(如Nature Photonics 2024),推动超表面器件向高性能、可重构方向发展,为光电器件设计提供新范式。
2025-06-12 16:00:16
1771
原创 机器学习在智能水泥基复合材料中的应用与实践
摘要:本次会议聚焦机器学习在智能水泥基复合材料中的创新应用,涵盖材料设计优化、性能预测等前沿方向。会议亮点包括:前沿技术融合(物理信息神经网络、生成对抗网络等)、全流程实战设计(从数据到模型优化)、科研成果转化(解析最新SCI论文)。由国家级青年人才团队主讲,核心议程涉及特征工程、集成学习、深度学习方法等关键技术。会议将提供电子课件、案例代码及认证,助力跨学科研究。时间:2025年7月5-6日、12-13日线上举行。
2025-06-11 15:16:38
442
原创 机器学习在光子学设计中的应用与前沿进展
从光子器件的逆向设计到超构表面和超材料设计,从光子神经网络到非线性光学与光子芯片,机器学习在光子学领域的应用广泛且深入。,本次会议不仅为参会者提供了学习和交流的机会,还探讨了机器学习与光子学结合的未来趋势,如光子芯片制造、光学仪器增强和低功耗信息处理等,为光子学领域的发展提供了新的方向和思路。长期从事微纳光子学、光电子集成芯片、拓扑光子学、计算光子学以及深度学习与光子学交叉学科的研究,在国际知名期刊发表论文数十篇,并担任多个。其丰富的研究经验和深厚的学术背景,将为参会者带来极具价值的分享。
2025-06-10 14:16:24
444
原创 单超表面集成多功能量子门!中国北大团队突破量子计算集成瓶颈!
摘要:本研究提出了一种基于单个梯度超表面实现多种量子受控-Z(CZ)门的创新方案。与传统需要多个分立元件的线性光学方案不同,该方案利用超表面的并行分束特性和偏振-路径锁定机制,可同时实现偏振编码、路径编码、独立多门及级联门等多种功能。理论验证表明,该方案具有高保真度(>99%)、高效率(传输>95%)和紧凑集成优势,为片上高密度量子逻辑集成提供了新途径,对发展集成量子光学处理器具有重要意义。
2025-06-09 14:47:05
261
原创 文献分享 | 新型光调制技术:铁电畴调控半导体单层光发射的突破性进展
进一步实验表明,通过双栅极器件施加垂直电场(±0.2 V/nm阈值),可动态擦除或重构铁电畴,从而实现光发射的主动调控。畴壁处的面内电场(~20 mV/nm)诱导激子能级红移,且伴随显著滞后行为,证实了t-hBN的铁电特性与半导体光发射功能的协同作用。,证实激子在铁电畴内部与畴壁(DW)处的斯塔克位移(Stark shift)导致光谱分离,位移量约3 meV,且空间光发射图案与t-hBN的莫尔电势高度关联。【免责声明】内容源自Science Advances研究,非商用,版权归原作者,引用注明,风险自担。
2025-05-27 13:56:30
90
原创 Light顶刊成果:室温高灵敏度光子集成电路与SPAD阵列的直接耦合技术
《机器学习光子学导论》涵盖了光子器件仿真软件基础、优化方法在器件逆向设计中的应用,以及机器学习在光子学中的实践案例。内容包括双贝塞尔曲线波导设计、超构表面单元仿真、光分束器设计等,结合Python编程实现回归算法、神经网络模型及手写数字识别。深度学习应用于微纳光子学,如级联网络光谱预测、生成-对抗网络超构表面生成等。此外,探讨了机器学习在非线性光纤成像、光学深度神经网络等领域的应用,展望了智能光子学器件的未来发展方向。
2025-05-22 16:01:12
395
原创 文献分享| 突破性进展!拓扑光子晶体波导高效耦合技术实现94.2%传输效率
哈尔滨工业大学联合多所高校在《Nature》发表研究,提出基于“横向自旋匹配(TSM)”的拓扑光子晶体波导(TWG)高效耦合新机制,成功解决拓扑光子结构输入/输出效率低的核心难题。传统耦合依赖模式匹配,效率受限,而本研究通过揭示“自旋-动量锁定”的物理本质,量化横向自旋分布匹配度(β),突破正交模式耦合效率低的理论限制。研究团队利用“遗传算法(GA)”逆向设计纳米级耦合器,理论传输效率达96.3%,实验实测在1555nm波长下实现“94.2%”的效率,且在22nm带宽内保持≥90%的稳定性能。通过三维FDT
2025-05-20 11:05:07
348
原创 《Light》期刊最新成果:飞秒脉冲原位测量技术实现±1.6 fs误差,推动阿秒实验精度革新
《Light: Science & Applications》期刊(2025年第14卷)发表了一项突破性研究,提出了一种新型原位测量方法,解决了强场飞秒激光脉冲在焦区时空参数精确表征的长期难题。传统方法因光束畸变和空间平均效应,误差常超50%。新方法通过共轭焦成像与离子探测结合、动态理论模型和抗干扰验证,实现了高精度测量,误差稳定在±1.6fs。该技术不仅精准标定了脉冲持续时间,还解析了双电离机制,具有广泛的应用前景,如提升阿秒实验的可靠性、优化高次谐波相位匹配等。研究为光芯片加速器和精密光谱学提供
2025-05-16 17:49:56
387
原创 文献分享| -130dBc/Hz!全球首款芯片级微波振荡器登顶顶刊,6G/雷达性能狂飙
中国科研团队在《Light: Science & Applications》上发表的研究,成功实现了全混合集成芯片级微波振荡器,这一技术突破在5G/6G通信、雷达和量子精密测量等领域具有重要应用前景。该技术集成了高功率DFB激光器、超高品质氮化硅微谐振器和110GHz带宽光电探测器,实现了低相位噪声和高稳定性的微波信号生成。芯片面积仅为76mm²,功耗和成本可控,且通过创新噪声抑制机制,显著提升了性能。这一成果不仅解决了微梳系统集成化的难题,还为未来微波光子学的发展提供了高性能、高集成、高量产潜力的
2025-05-14 15:24:25
455
原创 人工智能驱动的COMSOL多孔介质建模与优化技术解析
2025年5月17日至18日及24日至25日,将举办一场线上技术会议,聚焦多物理场仿真与人工智能的融合应用。会议分为两个阶段,内容涵盖多孔介质力学、电化学多场耦合仿真及AI技术,旨在解决能源领域如锂离子电池设计中的复杂问题。会议特色包括多学科交叉融合、实战案例驱动及前沿技术工具链的演示,如COMSOL与PyCharm的联合使用。主讲团队由国内高校教授领衔,具备深厚的学术与工业经验。适合材料科学、能源工程等领域的研究人员及工程师参与,提供会议资料包及专业技能认证。此次会议为跨学科技术交流提供了平台,助力应对能
2025-05-09 15:02:53
497
原创 文献分享|《Light》顶刊:牛津团队实现相变超表面双模显微,AI图像处理零耗能切换文献
该研究通过相变材料与非局域超表面的协同设计,突破传统光学器件的功能限制。论文作者指出,未来需集成微型加热器实现电控切换,并探索可见光波段应用。这一成果为光学计算与AI硬件的融合提供了重要参考,相关技术或推动显微设备与智能终端的革新。论文链接:[Light: Science & Applications, 2025, DOI:10.1038/s41377-025-01841-x](https://doi.org/10.1038/s41377-025-01841-x)
2025-05-08 14:28:11
561
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人