Hog特征提取原理过程细节

本文详细介绍了HOG特征提取过程,包括图像预处理、梯度图计算、梯度方向量化及归一化等步骤,并通过实例说明了如何从图像中提取特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Hog

步骤:

  • 图像预处理
  • 梯度图
  • 归一化
  • SVM

一图读懂Hog

 读不懂那就一点一点看吧------------------------------------

1、图像预处理:包括伽马校正或灰度化

2、计算每一个像素点的梯度值,得到梯度图(规模和原图大小一样)

其中:

  • 水平梯度 gx =30-20=10
  • 竖直梯度 gy=64-32=32

到此,梯度图以计算完成

梯度方向的范围是0-180度。取绝对值的原因是这样效果更好

首先,我将0-180度分成9个bins,分别是0,20,40...160。然后统计每一个像素点所在的bin。请看下图:

左上图是8*8的梯度方向值,右上图是8*8的梯度强度值,下图是9个bins。

先看两个蓝色圈圈。因为蓝圈的方向是80度,大小是2,所以该点就投给80这个bin;

再看两个红色圈圈。因为红色圈圈的方向是10,大小是4,因为10距离0点为10,距离20点为也为10,那么有一半的大小是投给0这个bin,还有一半的大小(即是2)投给20这个bin。

那么统计完64个点的投票数以后,每个bin就会得到一个数值,可以得到一个直方图,在计算机里面就是一个大小为9的数组。

 3、对16*16大小的block归一化

归一化的目的是降低光照的影响。

上面取的8*8就是所谓的cell,以及求出的9bins就是cell的一维特征向量

对于图像中

检测窗口的尺寸为64×64,假设给出块的尺寸为16×16,块步长为(8,8),

经过计算:检测窗口中共滑动7×7=49个block。在一个块中选择细胞单元不再滑动,给出细胞单元的尺寸为(8,8),所以一个块中一共有2×2=4个cell。

每一个block将按照上图滑动的方式进行重复计算,直到整个图像的block都计算完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值