链表和邻接链表
数据模拟的速度会快很多,每次 new 一个新的节点,速度非常慢。
单链表
其中的领接表用的最多,主要是用来存储图和数。
每个点都存储了 value 和 next
e[N], ne[N] 当前的数值和next指针空节点的位置是-1
826 单链表
实现一个单链表,链表初始为空,支持三种操作:
向链表头插入一个数;
删除第 k 个插入的数后面的数;
在第 k 个插入的数后插入一个数。
现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
H x,表示向链表头插入一个数 x。
D k,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。
I k x,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。
输出格式
共一行,将整个链表从头到尾输出。
数据范围
1≤M≤100000
所有操作保证合法。
输入样例:
10
H 9
I 1 1
D 1
D 0
H 6
I 3 6
I 4 5
I 4 5
I 3 4
D 6
输出样例:
6 4 6 5
#include <iostream>
using namespace std;
const int N = 100010;
// head 是头结点的下标
// e[i] 是节点 i 的值
// ne[i] 表示节点 i 的 next 指针是多少
// idx 表示最新用到了哪个位置,一直只会增加
int head, e[N], ne[N], idx;
void init() {
idx = 0;
head = -1;
}
// 在头部加入节点
void add_to_head(int x) {
e[idx] = x;
ne[idx] = head;
head = idx;
idx ++ ;
}
// x 这个点插入到下标为 k 的后面
void add(int k, int x) {
e[idx] = x;
ne[idx] = ne[k];
ne[k] = idx;
idx ++ ;
}
// 删除下标为 k 的后面的点
void remove(int k) {
ne[k] = ne[ne[k]]; // 删除了就不管了,空间不用释放
}
int main()
{
int m;
cin >> m;
init();
while (m -- ) {
int k, x;
char op;
cin >> op;
if (op == 'H') {
cin >> x;
add_to_head(x);
} else if (op == 'D') {
cin >> k;
if (!k) {
head = ne[head]; // 一定要做特判
} else {
remove(k - 1);
}
} else {
cin >> k >> x;
add(k - 1, x);
}
}
for (int i = head; i != -1; i = ne[i]) cout << e[i] << ' ';
cout << endl;
return 0;
}
双链表
核心
0 作为 head, 1 作为 tail
int l[N], r[N];
827 双链表
实现一个双链表,双链表初始为空,支持 5 种操作:
在最左侧插入一个数;
在最右侧插入一个数;
将第 k 个插入的数删除;
在第 k 个插入的数左侧插入一个数;
在第 k 个插入的数右侧插入一个数
现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
L x,表示在链表的最左端插入数 x。
R x,表示在链表的最右端插入数 x。
D k,表示将第 k 个插入的数删除。
IL k x,表示在第 k 个插入的数左侧插入一个数。
IR k x,表示在第 k 个插入的数右侧插入一个数。
输出格式
共一行,将整个链表从左到右输出。
数据范围
1≤M≤100000
所有操作保证合法。
输入样例:
10
R 7
D 1
L 3
IL 2 10
D 3
IL 2 7
L 8
R 9
IL 4 7
IR 2 2
输出样例:
8 7 7 3 2 9
初始状态
#include <iostream>
using namespace std;
const int N = 100010;
int m;
// idx 是最新的数值下标位置
// e[N] 是当前位置的数值是多少
// l[N] 是某个节点左边的位置
// r[N] 是某个节点右边的位置
int l[N], r[N], e[N], idx;
// 默认 0 是头的位置, 1 是尾的位置
void init() {
r[0] = 1;
l[1] = 0;
idx = 2; // idx 从2开始
}
// 在 k 后面加上节点 x
void add(int k, int x) {
e[idx] = x;
l[idx] = k;
r[idx] = r[k];
l[r[k]] = idx; // 先左后右边,保证 k 的有效性
r[k] = idx;
idx ++ ;
}
// 删除第 k 个点
void remove(int k) {
r[l[k]] = r[k];
l[r[k]] = l[k]
}
栈与队列
栈就是先进后出
队列就是先进先出
模拟栈
#include <iostream>
using namespace N = 100010;
// stk[N] 栈
// tt 栈顶, 已经有数据
int stk[N], tt;
// 插入
stk[++ t] = x;
// 弹出
tt -- ;
// 判断栈是否为空
if (tt > 0) not empty
else empty
// 栈顶
stk[tt];
队列
// **************** 队列
// q[N] 队列
// hh 队头
// tt 队尾,tt 位置上是原有的数据
// 队尾插入,队头弹出
int q[N], hh, tt = -1;
// 插入
q[++ tt] = x;
// 弹出
hh ++ ;
// 判断空
if (hh << tt) not empty
else empty
// 取出队头元素
q[hh]
单调栈
找到每个数左边满足某个条件的最近的数
830 单调栈
给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。
输入格式
第一行包含整数 N,表示数列长度。
第二行包含 N 个整数,表示整数数列。
输出格式
共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。
数据范围
1≤N≤105
1≤数列中元素≤109
输入样例:
5
3 4 2 7 5
输出样例:
-1 3 -1 2 2
#include <iostream>
using namespace std;
const int N = 100010;
int n;
int stk[N], hh, tt;
int main()
{
cin >> n;
while (n -- ) {
int x;
cin >> x;
while (tt && stk[tt] >= x) tt -- ;
if (tt) cout << stk[tt] <<' ';
else cout << "-1 ";
stk[++ tt] = x;
}
return 0;
}
这里的 tt 初始数值不能是 -1
kmp
831 kmp字符串
给定一个模式串 S,以及一个模板串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模板串 P 在模式串 S 中多次作为子串出现。
求出模板串 P 在模式串 S 中所有出现的位置的起始下标。
输入格式
第一行输入整数 N,表示字符串 P 的长度。
第二行输入字符串 P。
第三行输入整数 M,表示字符串 S 的长度。
第四行输入字符串 S。
输出格式
共一行,输出所有出现位置的起始下标(下标从 0 开始计数),整数之间用空格隔开。
数据范围
1≤N≤105
1≤M≤106
输入样例:
3
aba
5
ababa
输出样例:
0 2
S[N], p[M]
for (int i = 1; i <= n; i ++ ) {
bool flag = true;
for (int j = 1; j <= m; j ++ ) {
if (s[i] != p[j]) {
flag = false;
break;
}
}
}
主串的某一个子串等于模式串的某一个前缀
#include <iostream>
using namespace std;
const int N = 10010, M = 100010;
int n, m;
char p[N], s[M];
int ne[N];
int main()
{
cin >> n >> p + 1 >> m >> s + 1;
// 求 next 数组
// ne[0] ne[1] 自动全局设置为 0, 因此第 3 个字母不匹配才会有回退的选择
for (int i = 2, j = 0; i <= n; i ++ ) {
while (j && p[i] != p[j + 1]) j = ne[j];
if (p[i] == p[j + 1]) j ++ ;
ne[i] = j;
}
for (int i = 1, j = 0; i <= m; i ++ ) {
while (j && s[i] != p[j + 1]) j = ne[j];
if (s[i] == p[j + 1]) j ++ ;
if (j == n) {
// 匹配成功
printf("%d ", i - n);
j = ne[j];
}
}
}
匹配成功的时候 j = ne[j] 是为了最快的开始下一个匹配