colab 使用 numba

本文介绍了如何在Google Colab环境中安装NVIDIA CUDA工具包,配置环境变量,并通过Numba实现CUDA并行计算。通过实例演示了使用@cuda.jit装饰器编写和运行简单的Hello World程序,以展示Numba在GPU计算中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

colab 使用 numba

必须安装cudatoolkit

关键问题在colab要勾选gpu选项

!apt-get install nvidia-cuda-toolkit
!apt-get install nvidia-cuda-toolkit
!pip3 install numba

import os
os.environ['NUMBAPRO_LIBDEVICE'] = "/usr/lib/nvidia-cuda-toolkit/libdevice"
os.environ['NUMBAPRO_NVVM'] = "/usr/lib/x86_64-linux-gnu/libnvvm.so"

from numba import cuda
import numpy as np
import time

@cuda.jit
def hello(data):
    data[cuda.blockIdx.x, cuda.threadIdx.x] = cuda.blockIdx.x

numBlocks = 5
threadsPerBlock = 10

data = np.ones((numBlocks, threadsPerBlock), dtype=np.uint8)

hello[numBlocks, threadsPerBlock](data)

print(data)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值