Shared Memory

本文探讨了在GPU异构计算中如何利用Shared Memory优化程序,以矩阵乘法为例,解释了普通矩阵乘法的缺点和基于Shared Memory的矩阵乘法的优势。通过减少全局内存访问次数,提高计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Shared Memory

我们知道,CPU和GPU组成异构计算架构,如果想从内存上优化程序,我们必须尽量减少主机与GPU设备间的数据拷贝,并将更多计算从主机端转移到GPU设备端,我们要尽量在设备端初始化数据,并计算中间数据,并尽量不做无意义的数据回写。

在这里插入图片描述

GPU的内存结构如图所示:GPU的计算核心都在Streaming Multiprocessor(SM)上,SM里有计算核心可直接访问的寄存器(Register)和共享内存(Shared Memory);多个SM可以读取显卡上的显存,包括全局内存(Global Memory)。每个SM上的Shared Memory相当于该SM上的一个缓存,一般都很小,Telsa V100的Shared Memory也只有96KB。注意,Shared Memory和Global Memory的字面上都有共享的意思,但是不要将两者的概念混淆,Shared Memory离计算核心更近,延迟很低;Global Memory是整个显卡上的全局内存,延迟高。

在这里插入图片描述

从软件角度来看,CUDA的线程可以访问不同级别的存储,每个Thread有独立的私有内存;每个Block中多个Thread都可以在该Block的Shared Memory中读写数据;整个Grid中所有Thread都可以读写Global Memory。Shared Memory的读写访问速度会远高于Global Memory。内存优化一般主要利用Shared Memory技术。下文将以矩阵乘法为例,展示如何使用Shared Memory来优化程序。

普通矩阵乘法

在这里插入图片描述

一个C = AB的矩阵乘法运算,需要我们把A的某一行与B的某一列的所有元素一一相乘,求和后,将结果存储到结果矩阵C的(row, col)上。在这种实现中,每个线程都要读取A的一整行和B的一整列,共计算M行*P列。以计算第row行为例,计算C[row, 0]、C[row, 1]…C[row, p-1]这些点时都需要从显存的Global Memory中把整个第row行读取一遍。可以算到,A矩阵中的每个点需要被读 B.width 次,B矩阵中的每个点需要被读 A.height 次。这样比较浪费时间。因此,可以将多次访问的数据放到Shared Memory中,减少重复读取的次数,并充分利用Shared Memory的延迟低的优势。

from numba import cuda
import numpy as np
import math
from time import time

@cuda.jit
def matmul(A, B, C):
    """  矩阵乘法 C = A * B
    """
    # Numba库提供了更简易的计算方法
    # x, y = cuda.grid(2)
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值